| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ex |
|- (/) e. _V |
| 2 |
1
|
snid |
|- (/) e. { (/) } |
| 3 |
|
fvex |
|- ( Base ` ( Scalar ` M ) ) e. _V |
| 4 |
|
map0e |
|- ( ( Base ` ( Scalar ` M ) ) e. _V -> ( ( Base ` ( Scalar ` M ) ) ^m (/) ) = 1o ) |
| 5 |
3 4
|
mp1i |
|- ( M e. X -> ( ( Base ` ( Scalar ` M ) ) ^m (/) ) = 1o ) |
| 6 |
|
df1o2 |
|- 1o = { (/) } |
| 7 |
5 6
|
eqtrdi |
|- ( M e. X -> ( ( Base ` ( Scalar ` M ) ) ^m (/) ) = { (/) } ) |
| 8 |
2 7
|
eleqtrrid |
|- ( M e. X -> (/) e. ( ( Base ` ( Scalar ` M ) ) ^m (/) ) ) |
| 9 |
|
0elpw |
|- (/) e. ~P ( Base ` M ) |
| 10 |
9
|
a1i |
|- ( M e. X -> (/) e. ~P ( Base ` M ) ) |
| 11 |
|
lincval |
|- ( ( M e. X /\ (/) e. ( ( Base ` ( Scalar ` M ) ) ^m (/) ) /\ (/) e. ~P ( Base ` M ) ) -> ( (/) ( linC ` M ) (/) ) = ( M gsum ( v e. (/) |-> ( ( (/) ` v ) ( .s ` M ) v ) ) ) ) |
| 12 |
8 10 11
|
mpd3an23 |
|- ( M e. X -> ( (/) ( linC ` M ) (/) ) = ( M gsum ( v e. (/) |-> ( ( (/) ` v ) ( .s ` M ) v ) ) ) ) |
| 13 |
|
mpt0 |
|- ( v e. (/) |-> ( ( (/) ` v ) ( .s ` M ) v ) ) = (/) |
| 14 |
13
|
a1i |
|- ( M e. X -> ( v e. (/) |-> ( ( (/) ` v ) ( .s ` M ) v ) ) = (/) ) |
| 15 |
14
|
oveq2d |
|- ( M e. X -> ( M gsum ( v e. (/) |-> ( ( (/) ` v ) ( .s ` M ) v ) ) ) = ( M gsum (/) ) ) |
| 16 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
| 17 |
16
|
gsum0 |
|- ( M gsum (/) ) = ( 0g ` M ) |
| 18 |
15 17
|
eqtrdi |
|- ( M e. X -> ( M gsum ( v e. (/) |-> ( ( (/) ` v ) ( .s ` M ) v ) ) ) = ( 0g ` M ) ) |
| 19 |
12 18
|
eqtrd |
|- ( M e. X -> ( (/) ( linC ` M ) (/) ) = ( 0g ` M ) ) |