Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
|- (/) e. _V |
2 |
1
|
snid |
|- (/) e. { (/) } |
3 |
|
fvex |
|- ( Base ` ( Scalar ` M ) ) e. _V |
4 |
|
map0e |
|- ( ( Base ` ( Scalar ` M ) ) e. _V -> ( ( Base ` ( Scalar ` M ) ) ^m (/) ) = 1o ) |
5 |
3 4
|
mp1i |
|- ( M e. X -> ( ( Base ` ( Scalar ` M ) ) ^m (/) ) = 1o ) |
6 |
|
df1o2 |
|- 1o = { (/) } |
7 |
5 6
|
eqtrdi |
|- ( M e. X -> ( ( Base ` ( Scalar ` M ) ) ^m (/) ) = { (/) } ) |
8 |
2 7
|
eleqtrrid |
|- ( M e. X -> (/) e. ( ( Base ` ( Scalar ` M ) ) ^m (/) ) ) |
9 |
|
0elpw |
|- (/) e. ~P ( Base ` M ) |
10 |
9
|
a1i |
|- ( M e. X -> (/) e. ~P ( Base ` M ) ) |
11 |
|
lincval |
|- ( ( M e. X /\ (/) e. ( ( Base ` ( Scalar ` M ) ) ^m (/) ) /\ (/) e. ~P ( Base ` M ) ) -> ( (/) ( linC ` M ) (/) ) = ( M gsum ( v e. (/) |-> ( ( (/) ` v ) ( .s ` M ) v ) ) ) ) |
12 |
8 10 11
|
mpd3an23 |
|- ( M e. X -> ( (/) ( linC ` M ) (/) ) = ( M gsum ( v e. (/) |-> ( ( (/) ` v ) ( .s ` M ) v ) ) ) ) |
13 |
|
mpt0 |
|- ( v e. (/) |-> ( ( (/) ` v ) ( .s ` M ) v ) ) = (/) |
14 |
13
|
a1i |
|- ( M e. X -> ( v e. (/) |-> ( ( (/) ` v ) ( .s ` M ) v ) ) = (/) ) |
15 |
14
|
oveq2d |
|- ( M e. X -> ( M gsum ( v e. (/) |-> ( ( (/) ` v ) ( .s ` M ) v ) ) ) = ( M gsum (/) ) ) |
16 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
17 |
16
|
gsum0 |
|- ( M gsum (/) ) = ( 0g ` M ) |
18 |
15 17
|
eqtrdi |
|- ( M e. X -> ( M gsum ( v e. (/) |-> ( ( (/) ` v ) ( .s ` M ) v ) ) ) = ( 0g ` M ) ) |
19 |
12 18
|
eqtrd |
|- ( M e. X -> ( (/) ( linC ` M ) (/) ) = ( 0g ` M ) ) |