Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Linear algebra (extension)
Linear combinations
lincval0
Next ⟩
lincvalsng
Metamath Proof Explorer
Ascii
Unicode
Theorem
lincval0
Description:
The value of an empty linear combination.
(Contributed by
AV
, 12-Apr-2019)
Ref
Expression
Assertion
lincval0
⊢
M
∈
X
→
∅
linC
⁡
M
∅
=
0
M
Proof
Step
Hyp
Ref
Expression
1
0ex
⊢
∅
∈
V
2
1
snid
⊢
∅
∈
∅
3
fvex
⊢
Base
Scalar
⁡
M
∈
V
4
map0e
⊢
Base
Scalar
⁡
M
∈
V
→
Base
Scalar
⁡
M
∅
=
1
𝑜
5
3
4
mp1i
⊢
M
∈
X
→
Base
Scalar
⁡
M
∅
=
1
𝑜
6
df1o2
⊢
1
𝑜
=
∅
7
5
6
eqtrdi
⊢
M
∈
X
→
Base
Scalar
⁡
M
∅
=
∅
8
2
7
eleqtrrid
⊢
M
∈
X
→
∅
∈
Base
Scalar
⁡
M
∅
9
0elpw
⊢
∅
∈
𝒫
Base
M
10
9
a1i
⊢
M
∈
X
→
∅
∈
𝒫
Base
M
11
lincval
⊢
M
∈
X
∧
∅
∈
Base
Scalar
⁡
M
∅
∧
∅
∈
𝒫
Base
M
→
∅
linC
⁡
M
∅
=
∑
M
v
∈
∅
∅
⁡
v
⋅
M
v
12
8
10
11
mpd3an23
⊢
M
∈
X
→
∅
linC
⁡
M
∅
=
∑
M
v
∈
∅
∅
⁡
v
⋅
M
v
13
mpt0
⊢
v
∈
∅
⟼
∅
⁡
v
⋅
M
v
=
∅
14
13
a1i
⊢
M
∈
X
→
v
∈
∅
⟼
∅
⁡
v
⋅
M
v
=
∅
15
14
oveq2d
⊢
M
∈
X
→
∑
M
v
∈
∅
∅
⁡
v
⋅
M
v
=
∑
M
∅
16
eqid
⊢
0
M
=
0
M
17
16
gsum0
⊢
∑
M
∅
=
0
M
18
15
17
eqtrdi
⊢
M
∈
X
→
∑
M
v
∈
∅
∅
⁡
v
⋅
M
v
=
0
M
19
12
18
eqtrd
⊢
M
∈
X
→
∅
linC
⁡
M
∅
=
0
M