Metamath Proof Explorer


Theorem lincval0

Description: The value of an empty linear combination. (Contributed by AV, 12-Apr-2019)

Ref Expression
Assertion lincval0 M X linC M = 0 M

Proof

Step Hyp Ref Expression
1 0ex V
2 1 snid
3 fvex Base Scalar M V
4 map0e Base Scalar M V Base Scalar M = 1 𝑜
5 3 4 mp1i M X Base Scalar M = 1 𝑜
6 df1o2 1 𝑜 =
7 5 6 eqtrdi M X Base Scalar M =
8 2 7 eleqtrrid M X Base Scalar M
9 0elpw 𝒫 Base M
10 9 a1i M X 𝒫 Base M
11 lincval M X Base Scalar M 𝒫 Base M linC M = M v v M v
12 8 10 11 mpd3an23 M X linC M = M v v M v
13 mpt0 v v M v =
14 13 a1i M X v v M v =
15 14 oveq2d M X M v v M v = M
16 eqid 0 M = 0 M
17 16 gsum0 M = 0 M
18 15 17 eqtrdi M X M v v M v = 0 M
19 12 18 eqtrd M X linC M = 0 M