Step |
Hyp |
Ref |
Expression |
1 |
|
0elpw |
⊢ ∅ ∈ 𝒫 ( Base ‘ 𝑀 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
3 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
4 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
5 |
2 3 4
|
lcoop |
⊢ ( ( 𝑀 ∈ Mnd ∧ ∅ ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑀 LinCo ∅ ) = { 𝑣 ∈ ( Base ‘ 𝑀 ) ∣ ∃ 𝑤 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ) } ) |
6 |
1 5
|
mpan2 |
⊢ ( 𝑀 ∈ Mnd → ( 𝑀 LinCo ∅ ) = { 𝑣 ∈ ( Base ‘ 𝑀 ) ∣ ∃ 𝑤 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ) } ) |
7 |
|
fvex |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V |
8 |
|
map0e |
⊢ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V → ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) = 1o ) |
9 |
7 8
|
mp1i |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) = 1o ) |
10 |
|
df1o2 |
⊢ 1o = { ∅ } |
11 |
9 10
|
eqtrdi |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) = { ∅ } ) |
12 |
11
|
rexeqdv |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( ∃ 𝑤 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ) ↔ ∃ 𝑤 ∈ { ∅ } ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ) ) ) |
13 |
|
lincval0 |
⊢ ( 𝑀 ∈ Mnd → ( ∅ ( linC ‘ 𝑀 ) ∅ ) = ( 0g ‘ 𝑀 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( ∅ ( linC ‘ 𝑀 ) ∅ ) = ( 0g ‘ 𝑀 ) ) |
15 |
14
|
eqeq2d |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑣 = ( ∅ ( linC ‘ 𝑀 ) ∅ ) ↔ 𝑣 = ( 0g ‘ 𝑀 ) ) ) |
16 |
15
|
anbi2d |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( ( ∅ ∈ Fin ∧ 𝑣 = ( ∅ ( linC ‘ 𝑀 ) ∅ ) ) ↔ ( ∅ ∈ Fin ∧ 𝑣 = ( 0g ‘ 𝑀 ) ) ) ) |
17 |
|
0ex |
⊢ ∅ ∈ V |
18 |
|
breq1 |
⊢ ( 𝑤 = ∅ → ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ∅ finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
19 |
|
fvex |
⊢ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∈ V |
20 |
|
0fsupp |
⊢ ( ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∈ V → ∅ finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) |
21 |
19 20
|
ax-mp |
⊢ ∅ finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) |
22 |
|
0fin |
⊢ ∅ ∈ Fin |
23 |
21 22
|
2th |
⊢ ( ∅ finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ∅ ∈ Fin ) |
24 |
18 23
|
bitrdi |
⊢ ( 𝑤 = ∅ → ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ∅ ∈ Fin ) ) |
25 |
|
oveq1 |
⊢ ( 𝑤 = ∅ → ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) = ( ∅ ( linC ‘ 𝑀 ) ∅ ) ) |
26 |
25
|
eqeq2d |
⊢ ( 𝑤 = ∅ → ( 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ↔ 𝑣 = ( ∅ ( linC ‘ 𝑀 ) ∅ ) ) ) |
27 |
24 26
|
anbi12d |
⊢ ( 𝑤 = ∅ → ( ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ) ↔ ( ∅ ∈ Fin ∧ 𝑣 = ( ∅ ( linC ‘ 𝑀 ) ∅ ) ) ) ) |
28 |
27
|
rexsng |
⊢ ( ∅ ∈ V → ( ∃ 𝑤 ∈ { ∅ } ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ) ↔ ( ∅ ∈ Fin ∧ 𝑣 = ( ∅ ( linC ‘ 𝑀 ) ∅ ) ) ) ) |
29 |
17 28
|
mp1i |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( ∃ 𝑤 ∈ { ∅ } ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ) ↔ ( ∅ ∈ Fin ∧ 𝑣 = ( ∅ ( linC ‘ 𝑀 ) ∅ ) ) ) ) |
30 |
22
|
a1i |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ∅ ∈ Fin ) |
31 |
30
|
biantrurd |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑣 = ( 0g ‘ 𝑀 ) ↔ ( ∅ ∈ Fin ∧ 𝑣 = ( 0g ‘ 𝑀 ) ) ) ) |
32 |
16 29 31
|
3bitr4d |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( ∃ 𝑤 ∈ { ∅ } ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ) ↔ 𝑣 = ( 0g ‘ 𝑀 ) ) ) |
33 |
12 32
|
bitrd |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( ∃ 𝑤 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ) ↔ 𝑣 = ( 0g ‘ 𝑀 ) ) ) |
34 |
33
|
rabbidva |
⊢ ( 𝑀 ∈ Mnd → { 𝑣 ∈ ( Base ‘ 𝑀 ) ∣ ∃ 𝑤 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ) } = { 𝑣 ∈ ( Base ‘ 𝑀 ) ∣ 𝑣 = ( 0g ‘ 𝑀 ) } ) |
35 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
36 |
2 35
|
mndidcl |
⊢ ( 𝑀 ∈ Mnd → ( 0g ‘ 𝑀 ) ∈ ( Base ‘ 𝑀 ) ) |
37 |
|
rabsn |
⊢ ( ( 0g ‘ 𝑀 ) ∈ ( Base ‘ 𝑀 ) → { 𝑣 ∈ ( Base ‘ 𝑀 ) ∣ 𝑣 = ( 0g ‘ 𝑀 ) } = { ( 0g ‘ 𝑀 ) } ) |
38 |
36 37
|
syl |
⊢ ( 𝑀 ∈ Mnd → { 𝑣 ∈ ( Base ‘ 𝑀 ) ∣ 𝑣 = ( 0g ‘ 𝑀 ) } = { ( 0g ‘ 𝑀 ) } ) |
39 |
6 34 38
|
3eqtrd |
⊢ ( 𝑀 ∈ Mnd → ( 𝑀 LinCo ∅ ) = { ( 0g ‘ 𝑀 ) } ) |