Metamath Proof Explorer


Theorem lco0

Description: The set of empty linear combinations over a monoid is the singleton with the identity element of the monoid. (Contributed by AV, 12-Apr-2019)

Ref Expression
Assertion lco0 ( 𝑀 ∈ Mnd → ( 𝑀 LinCo ∅ ) = { ( 0g𝑀 ) } )

Proof

Step Hyp Ref Expression
1 0elpw ∅ ∈ 𝒫 ( Base ‘ 𝑀 )
2 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
3 eqid ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 )
4 eqid ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) )
5 2 3 4 lcoop ( ( 𝑀 ∈ Mnd ∧ ∅ ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑀 LinCo ∅ ) = { 𝑣 ∈ ( Base ‘ 𝑀 ) ∣ ∃ 𝑤 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ) } )
6 1 5 mpan2 ( 𝑀 ∈ Mnd → ( 𝑀 LinCo ∅ ) = { 𝑣 ∈ ( Base ‘ 𝑀 ) ∣ ∃ 𝑤 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ) } )
7 fvex ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V
8 map0e ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V → ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) = 1o )
9 7 8 mp1i ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) = 1o )
10 df1o2 1o = { ∅ }
11 9 10 eqtrdi ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) = { ∅ } )
12 11 rexeqdv ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( ∃ 𝑤 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ) ↔ ∃ 𝑤 ∈ { ∅ } ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ) ) )
13 lincval0 ( 𝑀 ∈ Mnd → ( ∅ ( linC ‘ 𝑀 ) ∅ ) = ( 0g𝑀 ) )
14 13 adantr ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( ∅ ( linC ‘ 𝑀 ) ∅ ) = ( 0g𝑀 ) )
15 14 eqeq2d ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑣 = ( ∅ ( linC ‘ 𝑀 ) ∅ ) ↔ 𝑣 = ( 0g𝑀 ) ) )
16 15 anbi2d ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( ( ∅ ∈ Fin ∧ 𝑣 = ( ∅ ( linC ‘ 𝑀 ) ∅ ) ) ↔ ( ∅ ∈ Fin ∧ 𝑣 = ( 0g𝑀 ) ) ) )
17 0ex ∅ ∈ V
18 breq1 ( 𝑤 = ∅ → ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ∅ finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) )
19 fvex ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∈ V
20 0fsupp ( ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∈ V → ∅ finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) )
21 19 20 ax-mp ∅ finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) )
22 0fin ∅ ∈ Fin
23 21 22 2th ( ∅ finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ∅ ∈ Fin )
24 18 23 bitrdi ( 𝑤 = ∅ → ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ∅ ∈ Fin ) )
25 oveq1 ( 𝑤 = ∅ → ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) = ( ∅ ( linC ‘ 𝑀 ) ∅ ) )
26 25 eqeq2d ( 𝑤 = ∅ → ( 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ↔ 𝑣 = ( ∅ ( linC ‘ 𝑀 ) ∅ ) ) )
27 24 26 anbi12d ( 𝑤 = ∅ → ( ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ) ↔ ( ∅ ∈ Fin ∧ 𝑣 = ( ∅ ( linC ‘ 𝑀 ) ∅ ) ) ) )
28 27 rexsng ( ∅ ∈ V → ( ∃ 𝑤 ∈ { ∅ } ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ) ↔ ( ∅ ∈ Fin ∧ 𝑣 = ( ∅ ( linC ‘ 𝑀 ) ∅ ) ) ) )
29 17 28 mp1i ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( ∃ 𝑤 ∈ { ∅ } ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ) ↔ ( ∅ ∈ Fin ∧ 𝑣 = ( ∅ ( linC ‘ 𝑀 ) ∅ ) ) ) )
30 22 a1i ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ∅ ∈ Fin )
31 30 biantrurd ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑣 = ( 0g𝑀 ) ↔ ( ∅ ∈ Fin ∧ 𝑣 = ( 0g𝑀 ) ) ) )
32 16 29 31 3bitr4d ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( ∃ 𝑤 ∈ { ∅ } ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ) ↔ 𝑣 = ( 0g𝑀 ) ) )
33 12 32 bitrd ( ( 𝑀 ∈ Mnd ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( ∃ 𝑤 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ) ↔ 𝑣 = ( 0g𝑀 ) ) )
34 33 rabbidva ( 𝑀 ∈ Mnd → { 𝑣 ∈ ( Base ‘ 𝑀 ) ∣ ∃ 𝑤 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) ( 𝑤 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑣 = ( 𝑤 ( linC ‘ 𝑀 ) ∅ ) ) } = { 𝑣 ∈ ( Base ‘ 𝑀 ) ∣ 𝑣 = ( 0g𝑀 ) } )
35 eqid ( 0g𝑀 ) = ( 0g𝑀 )
36 2 35 mndidcl ( 𝑀 ∈ Mnd → ( 0g𝑀 ) ∈ ( Base ‘ 𝑀 ) )
37 rabsn ( ( 0g𝑀 ) ∈ ( Base ‘ 𝑀 ) → { 𝑣 ∈ ( Base ‘ 𝑀 ) ∣ 𝑣 = ( 0g𝑀 ) } = { ( 0g𝑀 ) } )
38 36 37 syl ( 𝑀 ∈ Mnd → { 𝑣 ∈ ( Base ‘ 𝑀 ) ∣ 𝑣 = ( 0g𝑀 ) } = { ( 0g𝑀 ) } )
39 6 34 38 3eqtrd ( 𝑀 ∈ Mnd → ( 𝑀 LinCo ∅ ) = { ( 0g𝑀 ) } )