Metamath Proof Explorer


Theorem rexsng

Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012) Avoid ax-10 , ax-12 . (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis ralsng.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion rexsng ( 𝐴𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 ralsng.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 1 notbid ( 𝑥 = 𝐴 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
3 2 ralsng ( 𝐴𝑉 → ( ∀ 𝑥 ∈ { 𝐴 } ¬ 𝜑 ↔ ¬ 𝜓 ) )
4 dfrex2 ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ ¬ ∀ 𝑥 ∈ { 𝐴 } ¬ 𝜑 )
5 bicom1 ( ( ∀ 𝑥 ∈ { 𝐴 } ¬ 𝜑 ↔ ¬ 𝜓 ) → ( ¬ 𝜓 ↔ ∀ 𝑥 ∈ { 𝐴 } ¬ 𝜑 ) )
6 5 con1bid ( ( ∀ 𝑥 ∈ { 𝐴 } ¬ 𝜑 ↔ ¬ 𝜓 ) → ( ¬ ∀ 𝑥 ∈ { 𝐴 } ¬ 𝜑𝜓 ) )
7 4 6 bitrid ( ( ∀ 𝑥 ∈ { 𝐴 } ¬ 𝜑 ↔ ¬ 𝜓 ) → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑𝜓 ) )
8 3 7 syl ( 𝐴𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑𝜓 ) )