Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012) Avoid ax-10 , ax-12 . (Revised by GG, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralsng.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | rexsng | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralsng.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | 1 | notbid | ⊢ ( 𝑥 = 𝐴 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) | 
| 3 | 2 | ralsng | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝐴 } ¬ 𝜑 ↔ ¬ 𝜓 ) ) | 
| 4 | dfrex2 | ⊢ ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ ¬ ∀ 𝑥 ∈ { 𝐴 } ¬ 𝜑 ) | |
| 5 | bicom1 | ⊢ ( ( ∀ 𝑥 ∈ { 𝐴 } ¬ 𝜑 ↔ ¬ 𝜓 ) → ( ¬ 𝜓 ↔ ∀ 𝑥 ∈ { 𝐴 } ¬ 𝜑 ) ) | |
| 6 | 5 | con1bid | ⊢ ( ( ∀ 𝑥 ∈ { 𝐴 } ¬ 𝜑 ↔ ¬ 𝜓 ) → ( ¬ ∀ 𝑥 ∈ { 𝐴 } ¬ 𝜑 ↔ 𝜓 ) ) | 
| 7 | 4 6 | bitrid | ⊢ ( ( ∀ 𝑥 ∈ { 𝐴 } ¬ 𝜑 ↔ ¬ 𝜓 ) → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) ) | 
| 8 | 3 7 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) ) |