Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
⊢ ( 0g ‘ 𝑀 ) ∈ V |
2 |
1
|
snid |
⊢ ( 0g ‘ 𝑀 ) ∈ { ( 0g ‘ 𝑀 ) } |
3 |
|
oveq2 |
⊢ ( 𝑉 = ∅ → ( 𝑀 LinCo 𝑉 ) = ( 𝑀 LinCo ∅ ) ) |
4 |
|
lmodgrp |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ Grp ) |
5 |
|
grpmnd |
⊢ ( 𝑀 ∈ Grp → 𝑀 ∈ Mnd ) |
6 |
|
lco0 |
⊢ ( 𝑀 ∈ Mnd → ( 𝑀 LinCo ∅ ) = { ( 0g ‘ 𝑀 ) } ) |
7 |
4 5 6
|
3syl |
⊢ ( 𝑀 ∈ LMod → ( 𝑀 LinCo ∅ ) = { ( 0g ‘ 𝑀 ) } ) |
8 |
7
|
adantr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑀 LinCo ∅ ) = { ( 0g ‘ 𝑀 ) } ) |
9 |
3 8
|
sylan9eq |
⊢ ( ( 𝑉 = ∅ ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → ( 𝑀 LinCo 𝑉 ) = { ( 0g ‘ 𝑀 ) } ) |
10 |
2 9
|
eleqtrrid |
⊢ ( ( 𝑉 = ∅ ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → ( 0g ‘ 𝑀 ) ∈ ( 𝑀 LinCo 𝑉 ) ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
12 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
13 |
11 12
|
lmod0vcl |
⊢ ( 𝑀 ∈ LMod → ( 0g ‘ 𝑀 ) ∈ ( Base ‘ 𝑀 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 0g ‘ 𝑀 ) ∈ ( Base ‘ 𝑀 ) ) |
15 |
14
|
adantl |
⊢ ( ( ¬ 𝑉 = ∅ ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → ( 0g ‘ 𝑀 ) ∈ ( Base ‘ 𝑀 ) ) |
16 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
17 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) |
18 |
|
eqidd |
⊢ ( 𝑣 = 𝑤 → ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) |
19 |
18
|
cbvmptv |
⊢ ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) = ( 𝑤 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) |
20 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
21 |
11 16 17 12 19 20
|
lcoc0 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ( linC ‘ 𝑀 ) 𝑉 ) = ( 0g ‘ 𝑀 ) ) ) |
22 |
21
|
adantl |
⊢ ( ( ¬ 𝑉 = ∅ ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ( linC ‘ 𝑀 ) 𝑉 ) = ( 0g ‘ 𝑀 ) ) ) |
23 |
|
simpl |
⊢ ( ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( ¬ 𝑉 = ∅ ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) ) → ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
24 |
|
breq1 |
⊢ ( 𝑠 = ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
25 |
|
oveq1 |
⊢ ( 𝑠 = ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) = ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ( linC ‘ 𝑀 ) 𝑉 ) ) |
26 |
25
|
eqeq2d |
⊢ ( 𝑠 = ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( ( 0g ‘ 𝑀 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ↔ ( 0g ‘ 𝑀 ) = ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ( linC ‘ 𝑀 ) 𝑉 ) ) ) |
27 |
|
eqcom |
⊢ ( ( 0g ‘ 𝑀 ) = ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ( linC ‘ 𝑀 ) 𝑉 ) ↔ ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ( linC ‘ 𝑀 ) 𝑉 ) = ( 0g ‘ 𝑀 ) ) |
28 |
26 27
|
bitrdi |
⊢ ( 𝑠 = ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( ( 0g ‘ 𝑀 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ↔ ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ( linC ‘ 𝑀 ) 𝑉 ) = ( 0g ‘ 𝑀 ) ) ) |
29 |
24 28
|
anbi12d |
⊢ ( 𝑠 = ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 0g ‘ 𝑀 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ↔ ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ( linC ‘ 𝑀 ) 𝑉 ) = ( 0g ‘ 𝑀 ) ) ) ) |
30 |
29
|
adantl |
⊢ ( ( ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( ¬ 𝑉 = ∅ ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) ) ∧ 𝑠 = ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 0g ‘ 𝑀 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ↔ ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ( linC ‘ 𝑀 ) 𝑉 ) = ( 0g ‘ 𝑀 ) ) ) ) |
31 |
23 30
|
rspcedv |
⊢ ( ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( ¬ 𝑉 = ∅ ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) ) → ( ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ( linC ‘ 𝑀 ) 𝑉 ) = ( 0g ‘ 𝑀 ) ) → ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 0g ‘ 𝑀 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) |
32 |
31
|
ex |
⊢ ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) → ( ( ¬ 𝑉 = ∅ ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → ( ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ( linC ‘ 𝑀 ) 𝑉 ) = ( 0g ‘ 𝑀 ) ) → ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 0g ‘ 𝑀 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) |
33 |
32
|
com23 |
⊢ ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) → ( ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ( linC ‘ 𝑀 ) 𝑉 ) = ( 0g ‘ 𝑀 ) ) → ( ( ¬ 𝑉 = ∅ ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 0g ‘ 𝑀 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) |
34 |
33
|
3impib |
⊢ ( ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ( 𝑣 ∈ 𝑉 ↦ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ( linC ‘ 𝑀 ) 𝑉 ) = ( 0g ‘ 𝑀 ) ) → ( ( ¬ 𝑉 = ∅ ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 0g ‘ 𝑀 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) |
35 |
22 34
|
mpcom |
⊢ ( ( ¬ 𝑉 = ∅ ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 0g ‘ 𝑀 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) |
36 |
11 16 20
|
lcoval |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ( 0g ‘ 𝑀 ) ∈ ( 𝑀 LinCo 𝑉 ) ↔ ( ( 0g ‘ 𝑀 ) ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 0g ‘ 𝑀 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) |
37 |
36
|
adantl |
⊢ ( ( ¬ 𝑉 = ∅ ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → ( ( 0g ‘ 𝑀 ) ∈ ( 𝑀 LinCo 𝑉 ) ↔ ( ( 0g ‘ 𝑀 ) ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 0g ‘ 𝑀 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) |
38 |
15 35 37
|
mpbir2and |
⊢ ( ( ¬ 𝑉 = ∅ ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → ( 0g ‘ 𝑀 ) ∈ ( 𝑀 LinCo 𝑉 ) ) |
39 |
10 38
|
pm2.61ian |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 0g ‘ 𝑀 ) ∈ ( 𝑀 LinCo 𝑉 ) ) |