Metamath Proof Explorer


Theorem lcoel0

Description: The zero vector is always a linear combination. (Contributed by AV, 12-Apr-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Assertion lcoel0 M LMod V 𝒫 Base M 0 M M LinCo V

Proof

Step Hyp Ref Expression
1 fvex 0 M V
2 1 snid 0 M 0 M
3 oveq2 V = M LinCo V = M LinCo
4 lmodgrp M LMod M Grp
5 grpmnd M Grp M Mnd
6 lco0 M Mnd M LinCo = 0 M
7 4 5 6 3syl M LMod M LinCo = 0 M
8 7 adantr M LMod V 𝒫 Base M M LinCo = 0 M
9 3 8 sylan9eq V = M LMod V 𝒫 Base M M LinCo V = 0 M
10 2 9 eleqtrrid V = M LMod V 𝒫 Base M 0 M M LinCo V
11 eqid Base M = Base M
12 eqid 0 M = 0 M
13 11 12 lmod0vcl M LMod 0 M Base M
14 13 adantr M LMod V 𝒫 Base M 0 M Base M
15 14 adantl ¬ V = M LMod V 𝒫 Base M 0 M Base M
16 eqid Scalar M = Scalar M
17 eqid 0 Scalar M = 0 Scalar M
18 eqidd v = w 0 Scalar M = 0 Scalar M
19 18 cbvmptv v V 0 Scalar M = w V 0 Scalar M
20 eqid Base Scalar M = Base Scalar M
21 11 16 17 12 19 20 lcoc0 M LMod V 𝒫 Base M v V 0 Scalar M Base Scalar M V finSupp 0 Scalar M v V 0 Scalar M v V 0 Scalar M linC M V = 0 M
22 21 adantl ¬ V = M LMod V 𝒫 Base M v V 0 Scalar M Base Scalar M V finSupp 0 Scalar M v V 0 Scalar M v V 0 Scalar M linC M V = 0 M
23 simpl v V 0 Scalar M Base Scalar M V ¬ V = M LMod V 𝒫 Base M v V 0 Scalar M Base Scalar M V
24 breq1 s = v V 0 Scalar M finSupp 0 Scalar M s finSupp 0 Scalar M v V 0 Scalar M
25 oveq1 s = v V 0 Scalar M s linC M V = v V 0 Scalar M linC M V
26 25 eqeq2d s = v V 0 Scalar M 0 M = s linC M V 0 M = v V 0 Scalar M linC M V
27 eqcom 0 M = v V 0 Scalar M linC M V v V 0 Scalar M linC M V = 0 M
28 26 27 bitrdi s = v V 0 Scalar M 0 M = s linC M V v V 0 Scalar M linC M V = 0 M
29 24 28 anbi12d s = v V 0 Scalar M finSupp 0 Scalar M s 0 M = s linC M V finSupp 0 Scalar M v V 0 Scalar M v V 0 Scalar M linC M V = 0 M
30 29 adantl v V 0 Scalar M Base Scalar M V ¬ V = M LMod V 𝒫 Base M s = v V 0 Scalar M finSupp 0 Scalar M s 0 M = s linC M V finSupp 0 Scalar M v V 0 Scalar M v V 0 Scalar M linC M V = 0 M
31 23 30 rspcedv v V 0 Scalar M Base Scalar M V ¬ V = M LMod V 𝒫 Base M finSupp 0 Scalar M v V 0 Scalar M v V 0 Scalar M linC M V = 0 M s Base Scalar M V finSupp 0 Scalar M s 0 M = s linC M V
32 31 ex v V 0 Scalar M Base Scalar M V ¬ V = M LMod V 𝒫 Base M finSupp 0 Scalar M v V 0 Scalar M v V 0 Scalar M linC M V = 0 M s Base Scalar M V finSupp 0 Scalar M s 0 M = s linC M V
33 32 com23 v V 0 Scalar M Base Scalar M V finSupp 0 Scalar M v V 0 Scalar M v V 0 Scalar M linC M V = 0 M ¬ V = M LMod V 𝒫 Base M s Base Scalar M V finSupp 0 Scalar M s 0 M = s linC M V
34 33 3impib v V 0 Scalar M Base Scalar M V finSupp 0 Scalar M v V 0 Scalar M v V 0 Scalar M linC M V = 0 M ¬ V = M LMod V 𝒫 Base M s Base Scalar M V finSupp 0 Scalar M s 0 M = s linC M V
35 22 34 mpcom ¬ V = M LMod V 𝒫 Base M s Base Scalar M V finSupp 0 Scalar M s 0 M = s linC M V
36 11 16 20 lcoval M LMod V 𝒫 Base M 0 M M LinCo V 0 M Base M s Base Scalar M V finSupp 0 Scalar M s 0 M = s linC M V
37 36 adantl ¬ V = M LMod V 𝒫 Base M 0 M M LinCo V 0 M Base M s Base Scalar M V finSupp 0 Scalar M s 0 M = s linC M V
38 15 35 37 mpbir2and ¬ V = M LMod V 𝒫 Base M 0 M M LinCo V
39 10 38 pm2.61ian M LMod V 𝒫 Base M 0 M M LinCo V