Metamath Proof Explorer


Theorem lincsum

Description: The sum of two linear combinations is a linear combination, see also the proof in Lang p. 129. (Contributed by AV, 4-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Hypotheses lincsum.p +˙=+M
lincsum.x X=AlinCMV
lincsum.y Y=BlinCMV
lincsum.s S=ScalarM
lincsum.r R=BaseS
lincsum.b ˙=+S
Assertion lincsum MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBX+˙Y=A˙fBlinCMV

Proof

Step Hyp Ref Expression
1 lincsum.p +˙=+M
2 lincsum.x X=AlinCMV
3 lincsum.y Y=BlinCMV
4 lincsum.s S=ScalarM
5 lincsum.r R=BaseS
6 lincsum.b ˙=+S
7 eqid BaseM=BaseM
8 eqid 0M=0M
9 lmodcmn MLModMCMnd
10 9 adantr MLModV𝒫BaseMMCMnd
11 10 3ad2ant1 MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBMCMnd
12 simpr MLModV𝒫BaseMV𝒫BaseM
13 12 3ad2ant1 MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBV𝒫BaseM
14 simpl MLModV𝒫BaseMMLMod
15 14 3ad2ant1 MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBMLMod
16 15 adantr MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBxVMLMod
17 elmapi ARVA:VR
18 ffvelcdm A:VRxVAxR
19 18 ex A:VRxVAxR
20 17 19 syl ARVxVAxR
21 20 adantr ARVBRVxVAxR
22 21 3ad2ant2 MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBxVAxR
23 22 imp MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBxVAxR
24 elelpwi xVV𝒫BaseMxBaseM
25 24 expcom V𝒫BaseMxVxBaseM
26 25 adantl MLModV𝒫BaseMxVxBaseM
27 26 3ad2ant1 MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBxVxBaseM
28 27 imp MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBxVxBaseM
29 eqid M=M
30 7 4 29 5 lmodvscl MLModAxRxBaseMAxMxBaseM
31 16 23 28 30 syl3anc MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBxVAxMxBaseM
32 elmapi BRVB:VR
33 ffvelcdm B:VRxVBxR
34 33 ex B:VRxVBxR
35 32 34 syl BRVxVBxR
36 35 adantl ARVBRVxVBxR
37 36 3ad2ant2 MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBxVBxR
38 37 imp MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBxVBxR
39 7 4 29 5 lmodvscl MLModBxRxBaseMBxMxBaseM
40 16 38 28 39 syl3anc MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBxVBxMxBaseM
41 eqidd MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBxVAxMx=xVAxMx
42 eqidd MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBxVBxMx=xVBxMx
43 id MLModV𝒫BaseMMLModV𝒫BaseM
44 simpl ARVBRVARV
45 simpl finSupp0SAfinSupp0SBfinSupp0SA
46 4 5 scmfsupp MLModV𝒫BaseMARVfinSupp0SAfinSupp0MxVAxMx
47 43 44 45 46 syl3an MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBfinSupp0MxVAxMx
48 simpr ARVBRVBRV
49 simpr finSupp0SAfinSupp0SBfinSupp0SB
50 4 5 scmfsupp MLModV𝒫BaseMBRVfinSupp0SBfinSupp0MxVBxMx
51 43 48 49 50 syl3an MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBfinSupp0MxVBxMx
52 7 8 1 11 13 31 40 41 42 47 51 gsummptfsadd MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBMxVAxMx+˙BxMx=MxVAxMx+˙MxVBxMx
53 12 adantr MLModV𝒫BaseMARVBRVV𝒫BaseM
54 elmapfn ARVAFnV
55 54 ad2antrl MLModV𝒫BaseMARVBRVAFnV
56 elmapfn BRVBFnV
57 56 ad2antll MLModV𝒫BaseMARVBRVBFnV
58 53 55 57 offvalfv MLModV𝒫BaseMARVBRVA˙fB=yVAy˙By
59 58 3adant3 MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBA˙fB=yVAy˙By
60 4 lmodfgrp MLModSGrp
61 60 grpmndd MLModSMnd
62 61 ad3antrrr MLModV𝒫BaseMARVBRVyVSMnd
63 ffvelcdm A:VRyVAyR
64 63 ex A:VRyVAyR
65 17 64 syl ARVyVAyR
66 65 ad2antrl MLModV𝒫BaseMARVBRVyVAyR
67 66 imp MLModV𝒫BaseMARVBRVyVAyR
68 4 fveq2i BaseS=BaseScalarM
69 5 68 eqtri R=BaseScalarM
70 67 69 eleqtrdi MLModV𝒫BaseMARVBRVyVAyBaseScalarM
71 ffvelcdm B:VRyVByR
72 71 69 eleqtrdi B:VRyVByBaseScalarM
73 72 ex B:VRyVByBaseScalarM
74 32 73 syl BRVyVByBaseScalarM
75 74 ad2antll MLModV𝒫BaseMARVBRVyVByBaseScalarM
76 75 imp MLModV𝒫BaseMARVBRVyVByBaseScalarM
77 4 eqcomi ScalarM=S
78 77 fveq2i BaseScalarM=BaseS
79 78 6 mndcl SMndAyBaseScalarMByBaseScalarMAy˙ByBaseScalarM
80 62 70 76 79 syl3anc MLModV𝒫BaseMARVBRVyVAy˙ByBaseScalarM
81 80 fmpttd MLModV𝒫BaseMARVBRVyVAy˙By:VBaseScalarM
82 fvex BaseScalarMV
83 elmapg BaseScalarMVV𝒫BaseMyVAy˙ByBaseScalarMVyVAy˙By:VBaseScalarM
84 82 53 83 sylancr MLModV𝒫BaseMARVBRVyVAy˙ByBaseScalarMVyVAy˙By:VBaseScalarM
85 81 84 mpbird MLModV𝒫BaseMARVBRVyVAy˙ByBaseScalarMV
86 85 3adant3 MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SByVAy˙ByBaseScalarMV
87 59 86 eqeltrd MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBA˙fBBaseScalarMV
88 lincval MLModA˙fBBaseScalarMVV𝒫BaseMA˙fBlinCMV=MxVA˙fBxMx
89 15 87 13 88 syl3anc MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBA˙fBlinCMV=MxVA˙fBxMx
90 54 56 anim12i ARVBRVAFnVBFnV
91 90 adantl MLModV𝒫BaseMARVBRVAFnVBFnV
92 91 adantr MLModV𝒫BaseMARVBRVxVAFnVBFnV
93 53 anim1i MLModV𝒫BaseMARVBRVxVV𝒫BaseMxV
94 fnfvof AFnVBFnVV𝒫BaseMxVA˙fBx=Ax˙Bx
95 92 93 94 syl2anc MLModV𝒫BaseMARVBRVxVA˙fBx=Ax˙Bx
96 6 a1i MLModV𝒫BaseMARVBRVxV˙=+S
97 96 oveqd MLModV𝒫BaseMARVBRVxVAx˙Bx=Ax+SBx
98 95 97 eqtrd MLModV𝒫BaseMARVBRVxVA˙fBx=Ax+SBx
99 98 oveq1d MLModV𝒫BaseMARVBRVxVA˙fBxMx=Ax+SBxMx
100 14 adantr MLModV𝒫BaseMARVBRVMLMod
101 100 adantr MLModV𝒫BaseMARVBRVxVMLMod
102 20 ad2antrl MLModV𝒫BaseMARVBRVxVAxR
103 102 imp MLModV𝒫BaseMARVBRVxVAxR
104 35 ad2antll MLModV𝒫BaseMARVBRVxVBxR
105 104 imp MLModV𝒫BaseMARVBRVxVBxR
106 26 adantr MLModV𝒫BaseMARVBRVxVxBaseM
107 106 imp MLModV𝒫BaseMARVBRVxVxBaseM
108 eqid ScalarM=ScalarM
109 4 fveq2i +S=+ScalarM
110 7 1 108 29 69 109 lmodvsdir MLModAxRBxRxBaseMAx+SBxMx=AxMx+˙BxMx
111 101 103 105 107 110 syl13anc MLModV𝒫BaseMARVBRVxVAx+SBxMx=AxMx+˙BxMx
112 99 111 eqtrd MLModV𝒫BaseMARVBRVxVA˙fBxMx=AxMx+˙BxMx
113 112 mpteq2dva MLModV𝒫BaseMARVBRVxVA˙fBxMx=xVAxMx+˙BxMx
114 113 oveq2d MLModV𝒫BaseMARVBRVMxVA˙fBxMx=MxVAxMx+˙BxMx
115 114 3adant3 MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBMxVA˙fBxMx=MxVAxMx+˙BxMx
116 89 115 eqtrd MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBA˙fBlinCMV=MxVAxMx+˙BxMx
117 2 3 oveq12i X+˙Y=AlinCMV+˙BlinCMV
118 69 oveq1i RV=BaseScalarMV
119 118 eleq2i ARVABaseScalarMV
120 119 biimpi ARVABaseScalarMV
121 120 ad2antrl MLModV𝒫BaseMARVBRVABaseScalarMV
122 lincval MLModABaseScalarMVV𝒫BaseMAlinCMV=MxVAxMx
123 100 121 53 122 syl3anc MLModV𝒫BaseMARVBRVAlinCMV=MxVAxMx
124 118 eleq2i BRVBBaseScalarMV
125 124 biimpi BRVBBaseScalarMV
126 125 ad2antll MLModV𝒫BaseMARVBRVBBaseScalarMV
127 lincval MLModBBaseScalarMVV𝒫BaseMBlinCMV=MxVBxMx
128 100 126 53 127 syl3anc MLModV𝒫BaseMARVBRVBlinCMV=MxVBxMx
129 123 128 oveq12d MLModV𝒫BaseMARVBRVAlinCMV+˙BlinCMV=MxVAxMx+˙MxVBxMx
130 129 3adant3 MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBAlinCMV+˙BlinCMV=MxVAxMx+˙MxVBxMx
131 117 130 eqtrid MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBX+˙Y=MxVAxMx+˙MxVBxMx
132 52 116 131 3eqtr4rd MLModV𝒫BaseMARVBRVfinSupp0SAfinSupp0SBX+˙Y=A˙fBlinCMV