Metamath Proof Explorer


Theorem lincscm

Description: A linear combinations multiplied with a scalar is a linear combination, see also the proof in Lang p. 129. (Contributed by AV, 9-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Hypotheses lincscm.s ˙ = M
lincscm.t · ˙ = Scalar M
lincscm.x X = A linC M V
lincscm.r R = Base Scalar M
lincscm.f F = x V S · ˙ A x
Assertion lincscm M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A S ˙ X = F linC M V

Proof

Step Hyp Ref Expression
1 lincscm.s ˙ = M
2 lincscm.t · ˙ = Scalar M
3 lincscm.x X = A linC M V
4 lincscm.r R = Base Scalar M
5 lincscm.f F = x V S · ˙ A x
6 eqid Base M = Base M
7 eqid Scalar M = Scalar M
8 eqid 0 M = 0 M
9 eqid + M = + M
10 simp1l M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A M LMod
11 simpr M LMod V 𝒫 Base M V 𝒫 Base M
12 11 3ad2ant1 M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A V 𝒫 Base M
13 simpr A R V S R S R
14 13 3ad2ant2 M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A S R
15 10 adantr M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A v V M LMod
16 elmapi A R V A : V R
17 ffvelrn A : V R v V A v R
18 17 ex A : V R v V A v R
19 16 18 syl A R V v V A v R
20 19 adantr A R V S R v V A v R
21 20 3ad2ant2 M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A v V A v R
22 21 imp M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A v V A v R
23 elelpwi v V V 𝒫 Base M v Base M
24 23 expcom V 𝒫 Base M v V v Base M
25 24 adantl M LMod V 𝒫 Base M v V v Base M
26 25 3ad2ant1 M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A v V v Base M
27 26 imp M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A v V v Base M
28 eqid M = M
29 6 7 28 4 lmodvscl M LMod A v R v Base M A v M v Base M
30 15 22 27 29 syl3anc M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A v V A v M v Base M
31 7 4 scmfsupp M LMod V 𝒫 Base M A R V finSupp 0 Scalar M A finSupp 0 M v V A v M v
32 31 3adant2r M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A finSupp 0 M v V A v M v
33 6 7 4 8 9 1 10 12 14 30 32 gsumvsmul M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A M v V S ˙ A v M v = S ˙ M v V A v M v
34 7 lmodring M LMod Scalar M Ring
35 34 adantr M LMod V 𝒫 Base M Scalar M Ring
36 35 3ad2ant1 M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A Scalar M Ring
37 36 adantr M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A x V Scalar M Ring
38 4 eleq2i S R S Base Scalar M
39 38 biimpi S R S Base Scalar M
40 39 adantl A R V S R S Base Scalar M
41 40 3ad2ant2 M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A S Base Scalar M
42 41 adantr M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A x V S Base Scalar M
43 ffvelrn A : V R x V A x R
44 43 4 eleqtrdi A : V R x V A x Base Scalar M
45 44 ex A : V R x V A x Base Scalar M
46 16 45 syl A R V x V A x Base Scalar M
47 46 adantr A R V S R x V A x Base Scalar M
48 47 3ad2ant2 M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A x V A x Base Scalar M
49 48 imp M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A x V A x Base Scalar M
50 eqid Base Scalar M = Base Scalar M
51 50 2 ringcl Scalar M Ring S Base Scalar M A x Base Scalar M S · ˙ A x Base Scalar M
52 37 42 49 51 syl3anc M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A x V S · ˙ A x Base Scalar M
53 52 5 fmptd M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A F : V Base Scalar M
54 fvex Base Scalar M V
55 elmapg Base Scalar M V V 𝒫 Base M F Base Scalar M V F : V Base Scalar M
56 54 12 55 sylancr M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A F Base Scalar M V F : V Base Scalar M
57 53 56 mpbird M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A F Base Scalar M V
58 lincval M LMod F Base Scalar M V V 𝒫 Base M F linC M V = M v V F v M v
59 10 57 12 58 syl3anc M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A F linC M V = M v V F v M v
60 simpr M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A v V v V
61 ovex S · ˙ A v V
62 fveq2 x = v A x = A v
63 62 oveq2d x = v S · ˙ A x = S · ˙ A v
64 63 5 fvmptg v V S · ˙ A v V F v = S · ˙ A v
65 60 61 64 sylancl M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A v V F v = S · ˙ A v
66 65 oveq1d M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A v V F v M v = S · ˙ A v M v
67 14 adantr M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A v V S R
68 6 7 28 4 2 lmodvsass M LMod S R A v R v Base M S · ˙ A v M v = S M A v M v
69 15 67 22 27 68 syl13anc M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A v V S · ˙ A v M v = S M A v M v
70 1 eqcomi M = ˙
71 70 a1i M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A v V M = ˙
72 71 oveqd M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A v V S M A v M v = S ˙ A v M v
73 69 72 eqtrd M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A v V S · ˙ A v M v = S ˙ A v M v
74 66 73 eqtrd M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A v V F v M v = S ˙ A v M v
75 74 mpteq2dva M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A v V F v M v = v V S ˙ A v M v
76 75 oveq2d M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A M v V F v M v = M v V S ˙ A v M v
77 59 76 eqtrd M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A F linC M V = M v V S ˙ A v M v
78 3 a1i M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A X = A linC M V
79 4 oveq1i R V = Base Scalar M V
80 79 eleq2i A R V A Base Scalar M V
81 80 biimpi A R V A Base Scalar M V
82 81 adantr A R V S R A Base Scalar M V
83 82 3ad2ant2 M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A A Base Scalar M V
84 lincval M LMod A Base Scalar M V V 𝒫 Base M A linC M V = M v V A v M v
85 10 83 12 84 syl3anc M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A A linC M V = M v V A v M v
86 78 85 eqtrd M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A X = M v V A v M v
87 86 oveq2d M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A S ˙ X = S ˙ M v V A v M v
88 33 77 87 3eqtr4rd M LMod V 𝒫 Base M A R V S R finSupp 0 Scalar M A S ˙ X = F linC M V