| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lincscm.s |
|
| 2 |
|
lincscm.t |
|
| 3 |
|
lincscm.x |
|
| 4 |
|
lincscm.r |
|
| 5 |
|
lincscm.f |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
simp1l |
|
| 11 |
|
simpr |
|
| 12 |
11
|
3ad2ant1 |
|
| 13 |
|
simpr |
|
| 14 |
13
|
3ad2ant2 |
|
| 15 |
10
|
adantr |
|
| 16 |
|
elmapi |
|
| 17 |
|
ffvelcdm |
|
| 18 |
17
|
ex |
|
| 19 |
16 18
|
syl |
|
| 20 |
19
|
adantr |
|
| 21 |
20
|
3ad2ant2 |
|
| 22 |
21
|
imp |
|
| 23 |
|
elelpwi |
|
| 24 |
23
|
expcom |
|
| 25 |
24
|
adantl |
|
| 26 |
25
|
3ad2ant1 |
|
| 27 |
26
|
imp |
|
| 28 |
|
eqid |
|
| 29 |
6 7 28 4
|
lmodvscl |
|
| 30 |
15 22 27 29
|
syl3anc |
|
| 31 |
7 4
|
scmfsupp |
|
| 32 |
31
|
3adant2r |
|
| 33 |
6 7 4 8 9 1 10 12 14 30 32
|
gsumvsmul |
|
| 34 |
7
|
lmodring |
|
| 35 |
34
|
adantr |
|
| 36 |
35
|
3ad2ant1 |
|
| 37 |
36
|
adantr |
|
| 38 |
4
|
eleq2i |
|
| 39 |
38
|
biimpi |
|
| 40 |
39
|
adantl |
|
| 41 |
40
|
3ad2ant2 |
|
| 42 |
41
|
adantr |
|
| 43 |
|
ffvelcdm |
|
| 44 |
43 4
|
eleqtrdi |
|
| 45 |
44
|
ex |
|
| 46 |
16 45
|
syl |
|
| 47 |
46
|
adantr |
|
| 48 |
47
|
3ad2ant2 |
|
| 49 |
48
|
imp |
|
| 50 |
|
eqid |
|
| 51 |
50 2
|
ringcl |
|
| 52 |
37 42 49 51
|
syl3anc |
|
| 53 |
52 5
|
fmptd |
|
| 54 |
|
fvex |
|
| 55 |
|
elmapg |
|
| 56 |
54 12 55
|
sylancr |
|
| 57 |
53 56
|
mpbird |
|
| 58 |
|
lincval |
|
| 59 |
10 57 12 58
|
syl3anc |
|
| 60 |
|
simpr |
|
| 61 |
|
ovex |
|
| 62 |
|
fveq2 |
|
| 63 |
62
|
oveq2d |
|
| 64 |
63 5
|
fvmptg |
|
| 65 |
60 61 64
|
sylancl |
|
| 66 |
65
|
oveq1d |
|
| 67 |
14
|
adantr |
|
| 68 |
6 7 28 4 2
|
lmodvsass |
|
| 69 |
15 67 22 27 68
|
syl13anc |
|
| 70 |
1
|
eqcomi |
|
| 71 |
70
|
a1i |
|
| 72 |
71
|
oveqd |
|
| 73 |
69 72
|
eqtrd |
|
| 74 |
66 73
|
eqtrd |
|
| 75 |
74
|
mpteq2dva |
|
| 76 |
75
|
oveq2d |
|
| 77 |
59 76
|
eqtrd |
|
| 78 |
3
|
a1i |
|
| 79 |
4
|
oveq1i |
|
| 80 |
79
|
eleq2i |
|
| 81 |
80
|
biimpi |
|
| 82 |
81
|
adantr |
|
| 83 |
82
|
3ad2ant2 |
|
| 84 |
|
lincval |
|
| 85 |
10 83 12 84
|
syl3anc |
|
| 86 |
78 85
|
eqtrd |
|
| 87 |
86
|
oveq2d |
|
| 88 |
33 77 87
|
3eqtr4rd |
|