Step |
Hyp |
Ref |
Expression |
1 |
|
lincscm.s |
|
2 |
|
lincscm.t |
|
3 |
|
lincscm.x |
|
4 |
|
lincscm.r |
|
5 |
|
lincscm.f |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
simp1l |
|
11 |
|
simpr |
|
12 |
11
|
3ad2ant1 |
|
13 |
|
simpr |
|
14 |
13
|
3ad2ant2 |
|
15 |
10
|
adantr |
|
16 |
|
elmapi |
|
17 |
|
ffvelrn |
|
18 |
17
|
ex |
|
19 |
16 18
|
syl |
|
20 |
19
|
adantr |
|
21 |
20
|
3ad2ant2 |
|
22 |
21
|
imp |
|
23 |
|
elelpwi |
|
24 |
23
|
expcom |
|
25 |
24
|
adantl |
|
26 |
25
|
3ad2ant1 |
|
27 |
26
|
imp |
|
28 |
|
eqid |
|
29 |
6 7 28 4
|
lmodvscl |
|
30 |
15 22 27 29
|
syl3anc |
|
31 |
7 4
|
scmfsupp |
|
32 |
31
|
3adant2r |
|
33 |
6 7 4 8 9 1 10 12 14 30 32
|
gsumvsmul |
|
34 |
7
|
lmodring |
|
35 |
34
|
adantr |
|
36 |
35
|
3ad2ant1 |
|
37 |
36
|
adantr |
|
38 |
4
|
eleq2i |
|
39 |
38
|
biimpi |
|
40 |
39
|
adantl |
|
41 |
40
|
3ad2ant2 |
|
42 |
41
|
adantr |
|
43 |
|
ffvelrn |
|
44 |
43 4
|
eleqtrdi |
|
45 |
44
|
ex |
|
46 |
16 45
|
syl |
|
47 |
46
|
adantr |
|
48 |
47
|
3ad2ant2 |
|
49 |
48
|
imp |
|
50 |
|
eqid |
|
51 |
50 2
|
ringcl |
|
52 |
37 42 49 51
|
syl3anc |
|
53 |
52 5
|
fmptd |
|
54 |
|
fvex |
|
55 |
|
elmapg |
|
56 |
54 12 55
|
sylancr |
|
57 |
53 56
|
mpbird |
|
58 |
|
lincval |
|
59 |
10 57 12 58
|
syl3anc |
|
60 |
|
simpr |
|
61 |
|
ovex |
|
62 |
|
fveq2 |
|
63 |
62
|
oveq2d |
|
64 |
63 5
|
fvmptg |
|
65 |
60 61 64
|
sylancl |
|
66 |
65
|
oveq1d |
|
67 |
14
|
adantr |
|
68 |
6 7 28 4 2
|
lmodvsass |
|
69 |
15 67 22 27 68
|
syl13anc |
|
70 |
1
|
eqcomi |
|
71 |
70
|
a1i |
|
72 |
71
|
oveqd |
|
73 |
69 72
|
eqtrd |
|
74 |
66 73
|
eqtrd |
|
75 |
74
|
mpteq2dva |
|
76 |
75
|
oveq2d |
|
77 |
59 76
|
eqtrd |
|
78 |
3
|
a1i |
|
79 |
4
|
oveq1i |
|
80 |
79
|
eleq2i |
|
81 |
80
|
biimpi |
|
82 |
81
|
adantr |
|
83 |
82
|
3ad2ant2 |
|
84 |
|
lincval |
|
85 |
10 83 12 84
|
syl3anc |
|
86 |
78 85
|
eqtrd |
|
87 |
86
|
oveq2d |
|
88 |
33 77 87
|
3eqtr4rd |
|