| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lincscm.s |
⊢ ∙ = ( ·𝑠 ‘ 𝑀 ) |
| 2 |
|
lincscm.t |
⊢ · = ( .r ‘ ( Scalar ‘ 𝑀 ) ) |
| 3 |
|
lincscm.x |
⊢ 𝑋 = ( 𝐴 ( linC ‘ 𝑀 ) 𝑉 ) |
| 4 |
|
lincscm.r |
⊢ 𝑅 = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
| 5 |
|
lincscm.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ ( 𝑆 · ( 𝐴 ‘ 𝑥 ) ) ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 7 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
| 8 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
| 9 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
| 10 |
|
simp1l |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → 𝑀 ∈ LMod ) |
| 11 |
|
simpr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 12 |
11
|
3ad2ant1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 13 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) → 𝑆 ∈ 𝑅 ) |
| 14 |
13
|
3ad2ant2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → 𝑆 ∈ 𝑅 ) |
| 15 |
10
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑀 ∈ LMod ) |
| 16 |
|
elmapi |
⊢ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) → 𝐴 : 𝑉 ⟶ 𝑅 ) |
| 17 |
|
ffvelcdm |
⊢ ( ( 𝐴 : 𝑉 ⟶ 𝑅 ∧ 𝑣 ∈ 𝑉 ) → ( 𝐴 ‘ 𝑣 ) ∈ 𝑅 ) |
| 18 |
17
|
ex |
⊢ ( 𝐴 : 𝑉 ⟶ 𝑅 → ( 𝑣 ∈ 𝑉 → ( 𝐴 ‘ 𝑣 ) ∈ 𝑅 ) ) |
| 19 |
16 18
|
syl |
⊢ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) → ( 𝑣 ∈ 𝑉 → ( 𝐴 ‘ 𝑣 ) ∈ 𝑅 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) → ( 𝑣 ∈ 𝑉 → ( 𝐴 ‘ 𝑣 ) ∈ 𝑅 ) ) |
| 21 |
20
|
3ad2ant2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝑣 ∈ 𝑉 → ( 𝐴 ‘ 𝑣 ) ∈ 𝑅 ) ) |
| 22 |
21
|
imp |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝐴 ‘ 𝑣 ) ∈ 𝑅 ) |
| 23 |
|
elelpwi |
⊢ ( ( 𝑣 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → 𝑣 ∈ ( Base ‘ 𝑀 ) ) |
| 24 |
23
|
expcom |
⊢ ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑣 ∈ 𝑉 → 𝑣 ∈ ( Base ‘ 𝑀 ) ) ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑣 ∈ 𝑉 → 𝑣 ∈ ( Base ‘ 𝑀 ) ) ) |
| 26 |
25
|
3ad2ant1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝑣 ∈ 𝑉 → 𝑣 ∈ ( Base ‘ 𝑀 ) ) ) |
| 27 |
26
|
imp |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ ( Base ‘ 𝑀 ) ) |
| 28 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
| 29 |
6 7 28 4
|
lmodvscl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝐴 ‘ 𝑣 ) ∈ 𝑅 ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ∈ ( Base ‘ 𝑀 ) ) |
| 30 |
15 22 27 29
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ∈ ( Base ‘ 𝑀 ) ) |
| 31 |
7 4
|
scmfsupp |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) finSupp ( 0g ‘ 𝑀 ) ) |
| 32 |
31
|
3adant2r |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) finSupp ( 0g ‘ 𝑀 ) ) |
| 33 |
6 7 4 8 9 1 10 12 14 30 32
|
gsumvsmul |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( 𝑆 ∙ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ) = ( 𝑆 ∙ ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ) ) |
| 34 |
7
|
lmodring |
⊢ ( 𝑀 ∈ LMod → ( Scalar ‘ 𝑀 ) ∈ Ring ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( Scalar ‘ 𝑀 ) ∈ Ring ) |
| 36 |
35
|
3ad2ant1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( Scalar ‘ 𝑀 ) ∈ Ring ) |
| 37 |
36
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∧ 𝑥 ∈ 𝑉 ) → ( Scalar ‘ 𝑀 ) ∈ Ring ) |
| 38 |
4
|
eleq2i |
⊢ ( 𝑆 ∈ 𝑅 ↔ 𝑆 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 39 |
38
|
biimpi |
⊢ ( 𝑆 ∈ 𝑅 → 𝑆 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 40 |
39
|
adantl |
⊢ ( ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) → 𝑆 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 41 |
40
|
3ad2ant2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → 𝑆 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 42 |
41
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∧ 𝑥 ∈ 𝑉 ) → 𝑆 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 43 |
|
ffvelcdm |
⊢ ( ( 𝐴 : 𝑉 ⟶ 𝑅 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐴 ‘ 𝑥 ) ∈ 𝑅 ) |
| 44 |
43 4
|
eleqtrdi |
⊢ ( ( 𝐴 : 𝑉 ⟶ 𝑅 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐴 ‘ 𝑥 ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 45 |
44
|
ex |
⊢ ( 𝐴 : 𝑉 ⟶ 𝑅 → ( 𝑥 ∈ 𝑉 → ( 𝐴 ‘ 𝑥 ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
| 46 |
16 45
|
syl |
⊢ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) → ( 𝑥 ∈ 𝑉 → ( 𝐴 ‘ 𝑥 ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) → ( 𝑥 ∈ 𝑉 → ( 𝐴 ‘ 𝑥 ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
| 48 |
47
|
3ad2ant2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝑥 ∈ 𝑉 → ( 𝐴 ‘ 𝑥 ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
| 49 |
48
|
imp |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐴 ‘ 𝑥 ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 50 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
| 51 |
50 2
|
ringcl |
⊢ ( ( ( Scalar ‘ 𝑀 ) ∈ Ring ∧ 𝑆 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝐴 ‘ 𝑥 ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝑆 · ( 𝐴 ‘ 𝑥 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 52 |
37 42 49 51
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑆 · ( 𝐴 ‘ 𝑥 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 53 |
52 5
|
fmptd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → 𝐹 : 𝑉 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 54 |
|
fvex |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V |
| 55 |
|
elmapg |
⊢ ( ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ↔ 𝐹 : 𝑉 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
| 56 |
54 12 55
|
sylancr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ↔ 𝐹 : 𝑉 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
| 57 |
53 56
|
mpbird |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
| 58 |
|
lincval |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ) |
| 59 |
10 57 12 58
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ) |
| 60 |
|
simpr |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ 𝑉 ) |
| 61 |
|
ovex |
⊢ ( 𝑆 · ( 𝐴 ‘ 𝑣 ) ) ∈ V |
| 62 |
|
fveq2 |
⊢ ( 𝑥 = 𝑣 → ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑣 ) ) |
| 63 |
62
|
oveq2d |
⊢ ( 𝑥 = 𝑣 → ( 𝑆 · ( 𝐴 ‘ 𝑥 ) ) = ( 𝑆 · ( 𝐴 ‘ 𝑣 ) ) ) |
| 64 |
63 5
|
fvmptg |
⊢ ( ( 𝑣 ∈ 𝑉 ∧ ( 𝑆 · ( 𝐴 ‘ 𝑣 ) ) ∈ V ) → ( 𝐹 ‘ 𝑣 ) = ( 𝑆 · ( 𝐴 ‘ 𝑣 ) ) ) |
| 65 |
60 61 64
|
sylancl |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑣 ) = ( 𝑆 · ( 𝐴 ‘ 𝑣 ) ) ) |
| 66 |
65
|
oveq1d |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = ( ( 𝑆 · ( 𝐴 ‘ 𝑣 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) |
| 67 |
14
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑆 ∈ 𝑅 ) |
| 68 |
6 7 28 4 2
|
lmodvsass |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑆 ∈ 𝑅 ∧ ( 𝐴 ‘ 𝑣 ) ∈ 𝑅 ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝑆 · ( 𝐴 ‘ 𝑣 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = ( 𝑆 ( ·𝑠 ‘ 𝑀 ) ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) |
| 69 |
15 67 22 27 68
|
syl13anc |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝑆 · ( 𝐴 ‘ 𝑣 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = ( 𝑆 ( ·𝑠 ‘ 𝑀 ) ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) |
| 70 |
1
|
eqcomi |
⊢ ( ·𝑠 ‘ 𝑀 ) = ∙ |
| 71 |
70
|
a1i |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ·𝑠 ‘ 𝑀 ) = ∙ ) |
| 72 |
71
|
oveqd |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝑆 ( ·𝑠 ‘ 𝑀 ) ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) = ( 𝑆 ∙ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) |
| 73 |
69 72
|
eqtrd |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝑆 · ( 𝐴 ‘ 𝑣 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = ( 𝑆 ∙ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) |
| 74 |
66 73
|
eqtrd |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = ( 𝑆 ∙ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) |
| 75 |
74
|
mpteq2dva |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) = ( 𝑣 ∈ 𝑉 ↦ ( 𝑆 ∙ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ) |
| 76 |
75
|
oveq2d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) = ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( 𝑆 ∙ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ) ) |
| 77 |
59 76
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( 𝑆 ∙ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ) ) |
| 78 |
3
|
a1i |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → 𝑋 = ( 𝐴 ( linC ‘ 𝑀 ) 𝑉 ) ) |
| 79 |
4
|
oveq1i |
⊢ ( 𝑅 ↑m 𝑉 ) = ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) |
| 80 |
79
|
eleq2i |
⊢ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ↔ 𝐴 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
| 81 |
80
|
biimpi |
⊢ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) → 𝐴 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
| 82 |
81
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) → 𝐴 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
| 83 |
82
|
3ad2ant2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → 𝐴 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
| 84 |
|
lincval |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝐴 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝐴 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ) |
| 85 |
10 83 12 84
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝐴 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ) |
| 86 |
78 85
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → 𝑋 = ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ) |
| 87 |
86
|
oveq2d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝑆 ∙ 𝑋 ) = ( 𝑆 ∙ ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐴 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ) ) |
| 88 |
33 77 87
|
3eqtr4rd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝑆 ∈ 𝑅 ) ∧ 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝑆 ∙ 𝑋 ) = ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) ) |