| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lincsumcl.b |
⊢ + = ( +g ‘ 𝑀 ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 3 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
| 5 |
2 3 4
|
lcoval |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝐶 ∈ ( 𝑀 LinCo 𝑉 ) ↔ ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) |
| 6 |
2 3 4
|
lcoval |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝐷 ∈ ( 𝑀 LinCo 𝑉 ) ↔ ( 𝐷 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) |
| 7 |
5 6
|
anbi12d |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ( 𝐶 ∈ ( 𝑀 LinCo 𝑉 ) ∧ 𝐷 ∈ ( 𝑀 LinCo 𝑉 ) ) ↔ ( ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐷 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) ) |
| 8 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐷 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) → 𝑀 ∈ LMod ) |
| 9 |
|
simpll |
⊢ ( ( ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐷 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) → 𝐶 ∈ ( Base ‘ 𝑀 ) ) |
| 10 |
9
|
adantl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐷 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) → 𝐶 ∈ ( Base ‘ 𝑀 ) ) |
| 11 |
|
simprl |
⊢ ( ( ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐷 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) → 𝐷 ∈ ( Base ‘ 𝑀 ) ) |
| 12 |
11
|
adantl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐷 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) → 𝐷 ∈ ( Base ‘ 𝑀 ) ) |
| 13 |
2 1
|
lmodvacl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐶 + 𝐷 ) ∈ ( Base ‘ 𝑀 ) ) |
| 14 |
8 10 12 13
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐷 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) → ( 𝐶 + 𝐷 ) ∈ ( Base ‘ 𝑀 ) ) |
| 15 |
3
|
lmodfgrp |
⊢ ( 𝑀 ∈ LMod → ( Scalar ‘ 𝑀 ) ∈ Grp ) |
| 16 |
15
|
grpmndd |
⊢ ( 𝑀 ∈ LMod → ( Scalar ‘ 𝑀 ) ∈ Mnd ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( Scalar ‘ 𝑀 ) ∈ Mnd ) |
| 18 |
17
|
adantl |
⊢ ( ( ( ( ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) ) ∧ ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → ( Scalar ‘ 𝑀 ) ∈ Mnd ) |
| 19 |
|
simpr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 20 |
19
|
adantl |
⊢ ( ( ( ( ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) ) ∧ ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 21 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
| 22 |
|
simpl |
⊢ ( ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
| 23 |
21 22
|
anim12i |
⊢ ( ( ( ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) ) ∧ ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) → ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) ) |
| 24 |
23
|
adantr |
⊢ ( ( ( ( ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) ) ∧ ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) ) |
| 25 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑀 ) ) = ( +g ‘ ( Scalar ‘ 𝑀 ) ) |
| 26 |
4 25
|
ofaddmndmap |
⊢ ( ( ( Scalar ‘ 𝑀 ) ∈ Mnd ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) ) → ( 𝑦 ∘f ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑥 ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
| 27 |
18 20 24 26
|
syl3anc |
⊢ ( ( ( ( ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) ) ∧ ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → ( 𝑦 ∘f ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑥 ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
| 28 |
16
|
anim1i |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ( Scalar ‘ 𝑀 ) ∈ Mnd ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
| 29 |
28
|
adantl |
⊢ ( ( ( ( ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) ) ∧ ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → ( ( Scalar ‘ 𝑀 ) ∈ Mnd ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
| 30 |
|
simprl |
⊢ ( ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 31 |
30
|
adantr |
⊢ ( ( ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 32 |
|
simprl |
⊢ ( ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 33 |
31 32
|
anim12i |
⊢ ( ( ( ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) ) ∧ ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) → ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
| 34 |
33
|
adantr |
⊢ ( ( ( ( ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) ) ∧ ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
| 35 |
4
|
mndpfsupp |
⊢ ( ( ( ( Scalar ‘ 𝑀 ) ∈ Mnd ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 𝑦 ∘f ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑥 ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 36 |
29 24 34 35
|
syl3anc |
⊢ ( ( ( ( ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) ) ∧ ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → ( 𝑦 ∘f ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑥 ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 37 |
|
oveq12 |
⊢ ( ( 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) → ( 𝐶 + 𝐷 ) = ( ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) + ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) |
| 38 |
37
|
expcom |
⊢ ( 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) → ( 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) → ( 𝐶 + 𝐷 ) = ( ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) + ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) → ( 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) → ( 𝐶 + 𝐷 ) = ( ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) + ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) |
| 40 |
39
|
adantl |
⊢ ( ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → ( 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) → ( 𝐶 + 𝐷 ) = ( ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) + ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) |
| 41 |
40
|
com12 |
⊢ ( 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) → ( ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → ( 𝐶 + 𝐷 ) = ( ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) + ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) → ( ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → ( 𝐶 + 𝐷 ) = ( ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) + ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) |
| 43 |
42
|
adantl |
⊢ ( ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → ( ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → ( 𝐶 + 𝐷 ) = ( ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) + ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) |
| 44 |
43
|
adantr |
⊢ ( ( ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → ( 𝐶 + 𝐷 ) = ( ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) + ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) |
| 45 |
44
|
imp |
⊢ ( ( ( ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) ) ∧ ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) → ( 𝐶 + 𝐷 ) = ( ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) + ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) |
| 46 |
45
|
adantr |
⊢ ( ( ( ( ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) ) ∧ ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → ( 𝐶 + 𝐷 ) = ( ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) + ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) |
| 47 |
|
simpr |
⊢ ( ( ( ( ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) ) ∧ ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
| 48 |
|
eqid |
⊢ ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) |
| 49 |
|
eqid |
⊢ ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) |
| 50 |
1 48 49 3 4 25
|
lincsum |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) + ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) = ( ( 𝑦 ∘f ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑥 ) ( linC ‘ 𝑀 ) 𝑉 ) ) |
| 51 |
47 24 34 50
|
syl3anc |
⊢ ( ( ( ( ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) ) ∧ ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → ( ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) + ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) = ( ( 𝑦 ∘f ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑥 ) ( linC ‘ 𝑀 ) 𝑉 ) ) |
| 52 |
46 51
|
eqtrd |
⊢ ( ( ( ( ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) ) ∧ ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → ( 𝐶 + 𝐷 ) = ( ( 𝑦 ∘f ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑥 ) ( linC ‘ 𝑀 ) 𝑉 ) ) |
| 53 |
|
breq1 |
⊢ ( 𝑠 = ( 𝑦 ∘f ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑥 ) → ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ( 𝑦 ∘f ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑥 ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
| 54 |
|
oveq1 |
⊢ ( 𝑠 = ( 𝑦 ∘f ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑥 ) → ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) = ( ( 𝑦 ∘f ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑥 ) ( linC ‘ 𝑀 ) 𝑉 ) ) |
| 55 |
54
|
eqeq2d |
⊢ ( 𝑠 = ( 𝑦 ∘f ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑥 ) → ( ( 𝐶 + 𝐷 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ↔ ( 𝐶 + 𝐷 ) = ( ( 𝑦 ∘f ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑥 ) ( linC ‘ 𝑀 ) 𝑉 ) ) ) |
| 56 |
53 55
|
anbi12d |
⊢ ( 𝑠 = ( 𝑦 ∘f ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑥 ) → ( ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝐶 + 𝐷 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ↔ ( ( 𝑦 ∘f ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑥 ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝐶 + 𝐷 ) = ( ( 𝑦 ∘f ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑥 ) ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) |
| 57 |
56
|
rspcev |
⊢ ( ( ( 𝑦 ∘f ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑥 ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( ( 𝑦 ∘f ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑥 ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝐶 + 𝐷 ) = ( ( 𝑦 ∘f ( +g ‘ ( Scalar ‘ 𝑀 ) ) 𝑥 ) ( linC ‘ 𝑀 ) 𝑉 ) ) ) → ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝐶 + 𝐷 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) |
| 58 |
27 36 52 57
|
syl12anc |
⊢ ( ( ( ( ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) ) ∧ ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ∧ ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) → ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝐶 + 𝐷 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) |
| 59 |
58
|
exp41 |
⊢ ( ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → ( ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) → ( ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝐶 + 𝐷 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) ) |
| 60 |
59
|
rexlimiva |
⊢ ( ∃ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) → ( ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) → ( ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝐶 + 𝐷 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) ) |
| 61 |
60
|
expd |
⊢ ( ∃ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) → ( 𝐶 ∈ ( Base ‘ 𝑀 ) → ( 𝐷 ∈ ( Base ‘ 𝑀 ) → ( ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝐶 + 𝐷 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) ) ) |
| 62 |
61
|
impcom |
⊢ ( ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → ( 𝐷 ∈ ( Base ‘ 𝑀 ) → ( ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝐶 + 𝐷 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) ) |
| 63 |
62
|
com13 |
⊢ ( ( 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → ( 𝐷 ∈ ( Base ‘ 𝑀 ) → ( ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝐶 + 𝐷 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) ) |
| 64 |
63
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) → ( 𝐷 ∈ ( Base ‘ 𝑀 ) → ( ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝐶 + 𝐷 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) ) |
| 65 |
64
|
impcom |
⊢ ( ( 𝐷 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → ( ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) → ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝐶 + 𝐷 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) |
| 66 |
65
|
impcom |
⊢ ( ( ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐷 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) → ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝐶 + 𝐷 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) |
| 67 |
66
|
impcom |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐷 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) → ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝐶 + 𝐷 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) |
| 68 |
2 3 4
|
lcoval |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ( 𝐶 + 𝐷 ) ∈ ( 𝑀 LinCo 𝑉 ) ↔ ( ( 𝐶 + 𝐷 ) ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝐶 + 𝐷 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) |
| 69 |
68
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐷 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) → ( ( 𝐶 + 𝐷 ) ∈ ( 𝑀 LinCo 𝑉 ) ↔ ( ( 𝐶 + 𝐷 ) ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑠 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝐶 + 𝐷 ) = ( 𝑠 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) |
| 70 |
14 67 69
|
mpbir2and |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐷 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) ) → ( 𝐶 + 𝐷 ) ∈ ( 𝑀 LinCo 𝑉 ) ) |
| 71 |
70
|
ex |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ( ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑦 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐶 = ( 𝑦 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ∧ ( 𝐷 ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ( 𝑥 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝐷 = ( 𝑥 ( linC ‘ 𝑀 ) 𝑉 ) ) ) ) → ( 𝐶 + 𝐷 ) ∈ ( 𝑀 LinCo 𝑉 ) ) ) |
| 72 |
7 71
|
sylbid |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ( 𝐶 ∈ ( 𝑀 LinCo 𝑉 ) ∧ 𝐷 ∈ ( 𝑀 LinCo 𝑉 ) ) → ( 𝐶 + 𝐷 ) ∈ ( 𝑀 LinCo 𝑉 ) ) ) |
| 73 |
72
|
imp |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐶 ∈ ( 𝑀 LinCo 𝑉 ) ∧ 𝐷 ∈ ( 𝑀 LinCo 𝑉 ) ) ) → ( 𝐶 + 𝐷 ) ∈ ( 𝑀 LinCo 𝑉 ) ) |