Metamath Proof Explorer


Theorem lincellss

Description: A linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Assertion lincellss ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) → ( ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) ∈ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 simpl1 ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) ∧ ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → 𝑀 ∈ LMod )
2 simprl ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) ∧ ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) )
3 ssexg ( ( 𝑉𝑆𝑆 ∈ ( LSubSp ‘ 𝑀 ) ) → 𝑉 ∈ V )
4 3 ancoms ( ( 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) → 𝑉 ∈ V )
5 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
6 eqid ( LSubSp ‘ 𝑀 ) = ( LSubSp ‘ 𝑀 )
7 5 6 lssss ( 𝑆 ∈ ( LSubSp ‘ 𝑀 ) → 𝑆 ⊆ ( Base ‘ 𝑀 ) )
8 sstr ( ( 𝑉𝑆𝑆 ⊆ ( Base ‘ 𝑀 ) ) → 𝑉 ⊆ ( Base ‘ 𝑀 ) )
9 elpwg ( 𝑉 ∈ V → ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ↔ 𝑉 ⊆ ( Base ‘ 𝑀 ) ) )
10 8 9 syl5ibrcom ( ( 𝑉𝑆𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( 𝑉 ∈ V → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) )
11 10 expcom ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → ( 𝑉𝑆 → ( 𝑉 ∈ V → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) )
12 7 11 syl ( 𝑆 ∈ ( LSubSp ‘ 𝑀 ) → ( 𝑉𝑆 → ( 𝑉 ∈ V → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) )
13 12 imp ( ( 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) → ( 𝑉 ∈ V → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) )
14 4 13 mpd ( ( 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) )
15 14 3adant1 ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) )
16 15 adantr ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) ∧ ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) )
17 lincval ( ( 𝑀 ∈ LMod ∧ 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑣𝑉 ↦ ( ( 𝐹𝑣 ) ( ·𝑠𝑀 ) 𝑣 ) ) ) )
18 1 2 16 17 syl3anc ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) ∧ ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑣𝑉 ↦ ( ( 𝐹𝑣 ) ( ·𝑠𝑀 ) 𝑣 ) ) ) )
19 eqid ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 )
20 eqid ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) )
21 6 19 20 gsumlsscl ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) → ( ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝑀 Σg ( 𝑣𝑉 ↦ ( ( 𝐹𝑣 ) ( ·𝑠𝑀 ) 𝑣 ) ) ) ∈ 𝑆 ) )
22 21 imp ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) ∧ ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 𝑀 Σg ( 𝑣𝑉 ↦ ( ( 𝐹𝑣 ) ( ·𝑠𝑀 ) 𝑣 ) ) ) ∈ 𝑆 )
23 18 22 eqeltrd ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) ∧ ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) ∈ 𝑆 )
24 23 ex ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉𝑆 ) → ( ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) ∈ 𝑆 ) )