Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) ∧ ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → 𝑀 ∈ LMod ) |
2 |
|
simprl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) ∧ ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
3 |
|
ssexg |
⊢ ( ( 𝑉 ⊆ 𝑆 ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ) → 𝑉 ∈ V ) |
4 |
3
|
ancoms |
⊢ ( ( 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) → 𝑉 ∈ V ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
6 |
|
eqid |
⊢ ( LSubSp ‘ 𝑀 ) = ( LSubSp ‘ 𝑀 ) |
7 |
5 6
|
lssss |
⊢ ( 𝑆 ∈ ( LSubSp ‘ 𝑀 ) → 𝑆 ⊆ ( Base ‘ 𝑀 ) ) |
8 |
|
sstr |
⊢ ( ( 𝑉 ⊆ 𝑆 ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → 𝑉 ⊆ ( Base ‘ 𝑀 ) ) |
9 |
|
elpwg |
⊢ ( 𝑉 ∈ V → ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ↔ 𝑉 ⊆ ( Base ‘ 𝑀 ) ) ) |
10 |
8 9
|
syl5ibrcom |
⊢ ( ( 𝑉 ⊆ 𝑆 ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( 𝑉 ∈ V → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
11 |
10
|
expcom |
⊢ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → ( 𝑉 ⊆ 𝑆 → ( 𝑉 ∈ V → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) ) |
12 |
7 11
|
syl |
⊢ ( 𝑆 ∈ ( LSubSp ‘ 𝑀 ) → ( 𝑉 ⊆ 𝑆 → ( 𝑉 ∈ V → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) ) |
13 |
12
|
imp |
⊢ ( ( 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) → ( 𝑉 ∈ V → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
14 |
4 13
|
mpd |
⊢ ( ( 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
15 |
14
|
3adant1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) ∧ ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
17 |
|
lincval |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ) |
18 |
1 2 16 17
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) ∧ ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ) |
19 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
20 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
21 |
6 19 20
|
gsumlsscl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) → ( ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ∈ 𝑆 ) ) |
22 |
21
|
imp |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) ∧ ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ∈ 𝑆 ) |
23 |
18 22
|
eqeltrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) ∧ ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) ∈ 𝑆 ) |
24 |
23
|
ex |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( LSubSp ‘ 𝑀 ) ∧ 𝑉 ⊆ 𝑆 ) → ( ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) ∈ 𝑆 ) ) |