| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumlsscl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑀 ) |
| 2 |
|
gsumlsscl.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
| 3 |
|
gsumlsscl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
| 5 |
|
lmodabl |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ Abel ) |
| 6 |
5
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) → 𝑀 ∈ Abel ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ 𝑅 ) ) ) → 𝑀 ∈ Abel ) |
| 8 |
|
ssexg |
⊢ ( ( 𝑉 ⊆ 𝑍 ∧ 𝑍 ∈ 𝑆 ) → 𝑉 ∈ V ) |
| 9 |
8
|
ancoms |
⊢ ( ( 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) → 𝑉 ∈ V ) |
| 10 |
9
|
3adant1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) → 𝑉 ∈ V ) |
| 11 |
10
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ 𝑅 ) ) ) → 𝑉 ∈ V ) |
| 12 |
|
3simpa |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) → ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ) ) |
| 13 |
1
|
lsssubg |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ) → 𝑍 ∈ ( SubGrp ‘ 𝑀 ) ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) → 𝑍 ∈ ( SubGrp ‘ 𝑀 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ 𝑅 ) ) ) → 𝑍 ∈ ( SubGrp ‘ 𝑀 ) ) |
| 16 |
12
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ 𝑅 ) ) ) → ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ 𝑅 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ) ) |
| 18 |
|
elmapi |
⊢ ( 𝐹 ∈ ( 𝐵 ↑m 𝑉 ) → 𝐹 : 𝑉 ⟶ 𝐵 ) |
| 19 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝑉 ⟶ 𝐵 ∧ 𝑣 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑣 ) ∈ 𝐵 ) |
| 20 |
19
|
ex |
⊢ ( 𝐹 : 𝑉 ⟶ 𝐵 → ( 𝑣 ∈ 𝑉 → ( 𝐹 ‘ 𝑣 ) ∈ 𝐵 ) ) |
| 21 |
18 20
|
syl |
⊢ ( 𝐹 ∈ ( 𝐵 ↑m 𝑉 ) → ( 𝑣 ∈ 𝑉 → ( 𝐹 ‘ 𝑣 ) ∈ 𝐵 ) ) |
| 22 |
21
|
ad2antrl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ 𝑅 ) ) ) → ( 𝑣 ∈ 𝑉 → ( 𝐹 ‘ 𝑣 ) ∈ 𝐵 ) ) |
| 23 |
22
|
imp |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ 𝑅 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑣 ) ∈ 𝐵 ) |
| 24 |
|
ssel |
⊢ ( 𝑉 ⊆ 𝑍 → ( 𝑣 ∈ 𝑉 → 𝑣 ∈ 𝑍 ) ) |
| 25 |
24
|
3ad2ant3 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) → ( 𝑣 ∈ 𝑉 → 𝑣 ∈ 𝑍 ) ) |
| 26 |
25
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ 𝑅 ) ) ) → ( 𝑣 ∈ 𝑉 → 𝑣 ∈ 𝑍 ) ) |
| 27 |
26
|
imp |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ 𝑅 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ 𝑍 ) |
| 28 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
| 29 |
2 28 3 1
|
lssvscl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ) ∧ ( ( 𝐹 ‘ 𝑣 ) ∈ 𝐵 ∧ 𝑣 ∈ 𝑍 ) ) → ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ∈ 𝑍 ) |
| 30 |
17 23 27 29
|
syl12anc |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ 𝑅 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ∈ 𝑍 ) |
| 31 |
30
|
fmpttd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ 𝑅 ) ) ) → ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) : 𝑉 ⟶ 𝑍 ) |
| 32 |
|
simp1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) → 𝑀 ∈ LMod ) |
| 33 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 34 |
33 1
|
lssss |
⊢ ( 𝑍 ∈ 𝑆 → 𝑍 ⊆ ( Base ‘ 𝑀 ) ) |
| 35 |
|
sstr |
⊢ ( ( 𝑉 ⊆ 𝑍 ∧ 𝑍 ⊆ ( Base ‘ 𝑀 ) ) → 𝑉 ⊆ ( Base ‘ 𝑀 ) ) |
| 36 |
35
|
expcom |
⊢ ( 𝑍 ⊆ ( Base ‘ 𝑀 ) → ( 𝑉 ⊆ 𝑍 → 𝑉 ⊆ ( Base ‘ 𝑀 ) ) ) |
| 37 |
34 36
|
syl |
⊢ ( 𝑍 ∈ 𝑆 → ( 𝑉 ⊆ 𝑍 → 𝑉 ⊆ ( Base ‘ 𝑀 ) ) ) |
| 38 |
37
|
a1i |
⊢ ( 𝑀 ∈ LMod → ( 𝑍 ∈ 𝑆 → ( 𝑉 ⊆ 𝑍 → 𝑉 ⊆ ( Base ‘ 𝑀 ) ) ) ) |
| 39 |
38
|
3imp |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) → 𝑉 ⊆ ( Base ‘ 𝑀 ) ) |
| 40 |
|
elpwg |
⊢ ( 𝑉 ∈ V → ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ↔ 𝑉 ⊆ ( Base ‘ 𝑀 ) ) ) |
| 41 |
10 40
|
syl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) → ( 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ↔ 𝑉 ⊆ ( Base ‘ 𝑀 ) ) ) |
| 42 |
39 41
|
mpbird |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 43 |
32 42
|
jca |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) → ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
| 44 |
43
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ 𝑅 ) ) ) → ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
| 45 |
|
simprl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ 𝑅 ) ) ) → 𝐹 ∈ ( 𝐵 ↑m 𝑉 ) ) |
| 46 |
|
simprr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ 𝑅 ) ) ) → 𝐹 finSupp ( 0g ‘ 𝑅 ) ) |
| 47 |
2 3
|
scmfsupp |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝐹 ∈ ( 𝐵 ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ 𝑅 ) ) → ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) finSupp ( 0g ‘ 𝑀 ) ) |
| 48 |
44 45 46 47
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ 𝑅 ) ) ) → ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) finSupp ( 0g ‘ 𝑀 ) ) |
| 49 |
4 7 11 15 31 48
|
gsumsubgcl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ 𝑅 ) ) ) → ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ∈ 𝑍 ) |
| 50 |
49
|
ex |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍 ) → ( ( 𝐹 ∈ ( 𝐵 ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ 𝑅 ) ) → ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ∈ 𝑍 ) ) |