Metamath Proof Explorer


Theorem gsumlsscl

Description: Closure of a group sum in a linear subspace: A (finitely supported) sum of scalar multiplications of vectors of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Hypotheses gsumlsscl.s S = LSubSp M
gsumlsscl.r R = Scalar M
gsumlsscl.b B = Base R
Assertion gsumlsscl M LMod Z S V Z F B V finSupp 0 R F M v V F v M v Z

Proof

Step Hyp Ref Expression
1 gsumlsscl.s S = LSubSp M
2 gsumlsscl.r R = Scalar M
3 gsumlsscl.b B = Base R
4 eqid 0 M = 0 M
5 lmodabl M LMod M Abel
6 5 3ad2ant1 M LMod Z S V Z M Abel
7 6 adantr M LMod Z S V Z F B V finSupp 0 R F M Abel
8 ssexg V Z Z S V V
9 8 ancoms Z S V Z V V
10 9 3adant1 M LMod Z S V Z V V
11 10 adantr M LMod Z S V Z F B V finSupp 0 R F V V
12 3simpa M LMod Z S V Z M LMod Z S
13 1 lsssubg M LMod Z S Z SubGrp M
14 12 13 syl M LMod Z S V Z Z SubGrp M
15 14 adantr M LMod Z S V Z F B V finSupp 0 R F Z SubGrp M
16 12 adantr M LMod Z S V Z F B V finSupp 0 R F M LMod Z S
17 16 adantr M LMod Z S V Z F B V finSupp 0 R F v V M LMod Z S
18 elmapi F B V F : V B
19 ffvelrn F : V B v V F v B
20 19 ex F : V B v V F v B
21 18 20 syl F B V v V F v B
22 21 ad2antrl M LMod Z S V Z F B V finSupp 0 R F v V F v B
23 22 imp M LMod Z S V Z F B V finSupp 0 R F v V F v B
24 ssel V Z v V v Z
25 24 3ad2ant3 M LMod Z S V Z v V v Z
26 25 adantr M LMod Z S V Z F B V finSupp 0 R F v V v Z
27 26 imp M LMod Z S V Z F B V finSupp 0 R F v V v Z
28 eqid M = M
29 2 28 3 1 lssvscl M LMod Z S F v B v Z F v M v Z
30 17 23 27 29 syl12anc M LMod Z S V Z F B V finSupp 0 R F v V F v M v Z
31 30 fmpttd M LMod Z S V Z F B V finSupp 0 R F v V F v M v : V Z
32 simp1 M LMod Z S V Z M LMod
33 eqid Base M = Base M
34 33 1 lssss Z S Z Base M
35 sstr V Z Z Base M V Base M
36 35 expcom Z Base M V Z V Base M
37 34 36 syl Z S V Z V Base M
38 37 a1i M LMod Z S V Z V Base M
39 38 3imp M LMod Z S V Z V Base M
40 elpwg V V V 𝒫 Base M V Base M
41 10 40 syl M LMod Z S V Z V 𝒫 Base M V Base M
42 39 41 mpbird M LMod Z S V Z V 𝒫 Base M
43 32 42 jca M LMod Z S V Z M LMod V 𝒫 Base M
44 43 adantr M LMod Z S V Z F B V finSupp 0 R F M LMod V 𝒫 Base M
45 simprl M LMod Z S V Z F B V finSupp 0 R F F B V
46 simprr M LMod Z S V Z F B V finSupp 0 R F finSupp 0 R F
47 2 3 scmfsupp M LMod V 𝒫 Base M F B V finSupp 0 R F finSupp 0 M v V F v M v
48 44 45 46 47 syl3anc M LMod Z S V Z F B V finSupp 0 R F finSupp 0 M v V F v M v
49 4 7 11 15 31 48 gsumsubgcl M LMod Z S V Z F B V finSupp 0 R F M v V F v M v Z
50 49 ex M LMod Z S V Z F B V finSupp 0 R F M v V F v M v Z