Step |
Hyp |
Ref |
Expression |
1 |
|
gsumlsscl.s |
|
2 |
|
gsumlsscl.r |
|
3 |
|
gsumlsscl.b |
|
4 |
|
eqid |
|
5 |
|
lmodabl |
|
6 |
5
|
3ad2ant1 |
|
7 |
6
|
adantr |
|
8 |
|
ssexg |
|
9 |
8
|
ancoms |
|
10 |
9
|
3adant1 |
|
11 |
10
|
adantr |
|
12 |
|
3simpa |
|
13 |
1
|
lsssubg |
|
14 |
12 13
|
syl |
|
15 |
14
|
adantr |
|
16 |
12
|
adantr |
|
17 |
16
|
adantr |
|
18 |
|
elmapi |
|
19 |
|
ffvelrn |
|
20 |
19
|
ex |
|
21 |
18 20
|
syl |
|
22 |
21
|
ad2antrl |
|
23 |
22
|
imp |
|
24 |
|
ssel |
|
25 |
24
|
3ad2ant3 |
|
26 |
25
|
adantr |
|
27 |
26
|
imp |
|
28 |
|
eqid |
|
29 |
2 28 3 1
|
lssvscl |
|
30 |
17 23 27 29
|
syl12anc |
|
31 |
30
|
fmpttd |
|
32 |
|
simp1 |
|
33 |
|
eqid |
|
34 |
33 1
|
lssss |
|
35 |
|
sstr |
|
36 |
35
|
expcom |
|
37 |
34 36
|
syl |
|
38 |
37
|
a1i |
|
39 |
38
|
3imp |
|
40 |
|
elpwg |
|
41 |
10 40
|
syl |
|
42 |
39 41
|
mpbird |
|
43 |
32 42
|
jca |
|
44 |
43
|
adantr |
|
45 |
|
simprl |
|
46 |
|
simprr |
|
47 |
2 3
|
scmfsupp |
|
48 |
44 45 46 47
|
syl3anc |
|
49 |
4 7 11 15 31 48
|
gsumsubgcl |
|
50 |
49
|
ex |
|