| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumlsscl.s |
|
| 2 |
|
gsumlsscl.r |
|
| 3 |
|
gsumlsscl.b |
|
| 4 |
|
eqid |
|
| 5 |
|
lmodabl |
|
| 6 |
5
|
3ad2ant1 |
|
| 7 |
6
|
adantr |
|
| 8 |
|
ssexg |
|
| 9 |
8
|
ancoms |
|
| 10 |
9
|
3adant1 |
|
| 11 |
10
|
adantr |
|
| 12 |
|
3simpa |
|
| 13 |
1
|
lsssubg |
|
| 14 |
12 13
|
syl |
|
| 15 |
14
|
adantr |
|
| 16 |
12
|
adantr |
|
| 17 |
16
|
adantr |
|
| 18 |
|
elmapi |
|
| 19 |
|
ffvelcdm |
|
| 20 |
19
|
ex |
|
| 21 |
18 20
|
syl |
|
| 22 |
21
|
ad2antrl |
|
| 23 |
22
|
imp |
|
| 24 |
|
ssel |
|
| 25 |
24
|
3ad2ant3 |
|
| 26 |
25
|
adantr |
|
| 27 |
26
|
imp |
|
| 28 |
|
eqid |
|
| 29 |
2 28 3 1
|
lssvscl |
|
| 30 |
17 23 27 29
|
syl12anc |
|
| 31 |
30
|
fmpttd |
|
| 32 |
|
simp1 |
|
| 33 |
|
eqid |
|
| 34 |
33 1
|
lssss |
|
| 35 |
|
sstr |
|
| 36 |
35
|
expcom |
|
| 37 |
34 36
|
syl |
|
| 38 |
37
|
a1i |
|
| 39 |
38
|
3imp |
|
| 40 |
|
elpwg |
|
| 41 |
10 40
|
syl |
|
| 42 |
39 41
|
mpbird |
|
| 43 |
32 42
|
jca |
|
| 44 |
43
|
adantr |
|
| 45 |
|
simprl |
|
| 46 |
|
simprr |
|
| 47 |
2 3
|
scmfsupp |
|
| 48 |
44 45 46 47
|
syl3anc |
|
| 49 |
4 7 11 15 31 48
|
gsumsubgcl |
|
| 50 |
49
|
ex |
|