Metamath Proof Explorer


Theorem gsumsubgcl

Description: Closure of a group sum in a subgroup. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by AV, 3-Jun-2019)

Ref Expression
Hypotheses gsumsubgcl.z 0˙=0G
gsumsubgcl.g φGAbel
gsumsubgcl.a φAV
gsumsubgcl.s φSSubGrpG
gsumsubgcl.f φF:AS
gsumsubgcl.w φfinSupp0˙F
Assertion gsumsubgcl φGFS

Proof

Step Hyp Ref Expression
1 gsumsubgcl.z 0˙=0G
2 gsumsubgcl.g φGAbel
3 gsumsubgcl.a φAV
4 gsumsubgcl.s φSSubGrpG
5 gsumsubgcl.f φF:AS
6 gsumsubgcl.w φfinSupp0˙F
7 ablcmn GAbelGCMnd
8 2 7 syl φGCMnd
9 subgsubm SSubGrpGSSubMndG
10 4 9 syl φSSubMndG
11 1 8 3 10 5 6 gsumsubmcl φGFS