Description: Closure of a group sum in a subgroup. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by AV, 3-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumsubgcl.z | |- .0. = ( 0g ` G ) |
|
gsumsubgcl.g | |- ( ph -> G e. Abel ) |
||
gsumsubgcl.a | |- ( ph -> A e. V ) |
||
gsumsubgcl.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
||
gsumsubgcl.f | |- ( ph -> F : A --> S ) |
||
gsumsubgcl.w | |- ( ph -> F finSupp .0. ) |
||
Assertion | gsumsubgcl | |- ( ph -> ( G gsum F ) e. S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsubgcl.z | |- .0. = ( 0g ` G ) |
|
2 | gsumsubgcl.g | |- ( ph -> G e. Abel ) |
|
3 | gsumsubgcl.a | |- ( ph -> A e. V ) |
|
4 | gsumsubgcl.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
|
5 | gsumsubgcl.f | |- ( ph -> F : A --> S ) |
|
6 | gsumsubgcl.w | |- ( ph -> F finSupp .0. ) |
|
7 | ablcmn | |- ( G e. Abel -> G e. CMnd ) |
|
8 | 2 7 | syl | |- ( ph -> G e. CMnd ) |
9 | subgsubm | |- ( S e. ( SubGrp ` G ) -> S e. ( SubMnd ` G ) ) |
|
10 | 4 9 | syl | |- ( ph -> S e. ( SubMnd ` G ) ) |
11 | 1 8 3 10 5 6 | gsumsubmcl | |- ( ph -> ( G gsum F ) e. S ) |