Metamath Proof Explorer


Theorem gsumsubgcl

Description: Closure of a group sum in a subgroup. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by AV, 3-Jun-2019)

Ref Expression
Hypotheses gsumsubgcl.z
|- .0. = ( 0g ` G )
gsumsubgcl.g
|- ( ph -> G e. Abel )
gsumsubgcl.a
|- ( ph -> A e. V )
gsumsubgcl.s
|- ( ph -> S e. ( SubGrp ` G ) )
gsumsubgcl.f
|- ( ph -> F : A --> S )
gsumsubgcl.w
|- ( ph -> F finSupp .0. )
Assertion gsumsubgcl
|- ( ph -> ( G gsum F ) e. S )

Proof

Step Hyp Ref Expression
1 gsumsubgcl.z
 |-  .0. = ( 0g ` G )
2 gsumsubgcl.g
 |-  ( ph -> G e. Abel )
3 gsumsubgcl.a
 |-  ( ph -> A e. V )
4 gsumsubgcl.s
 |-  ( ph -> S e. ( SubGrp ` G ) )
5 gsumsubgcl.f
 |-  ( ph -> F : A --> S )
6 gsumsubgcl.w
 |-  ( ph -> F finSupp .0. )
7 ablcmn
 |-  ( G e. Abel -> G e. CMnd )
8 2 7 syl
 |-  ( ph -> G e. CMnd )
9 subgsubm
 |-  ( S e. ( SubGrp ` G ) -> S e. ( SubMnd ` G ) )
10 4 9 syl
 |-  ( ph -> S e. ( SubMnd ` G ) )
11 1 8 3 10 5 6 gsumsubmcl
 |-  ( ph -> ( G gsum F ) e. S )