Step |
Hyp |
Ref |
Expression |
1 |
|
linc1.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
linc1.s |
⊢ 𝑆 = ( Scalar ‘ 𝑀 ) |
3 |
|
linc1.0 |
⊢ 0 = ( 0g ‘ 𝑆 ) |
4 |
|
linc1.1 |
⊢ 1 = ( 1r ‘ 𝑆 ) |
5 |
|
linc1.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑋 , 1 , 0 ) ) |
6 |
|
simp1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → 𝑀 ∈ LMod ) |
7 |
2
|
lmodring |
⊢ ( 𝑀 ∈ LMod → 𝑆 ∈ Ring ) |
8 |
2
|
eqcomi |
⊢ ( Scalar ‘ 𝑀 ) = 𝑆 |
9 |
8
|
fveq2i |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ 𝑆 ) |
10 |
9 4
|
ringidcl |
⊢ ( 𝑆 ∈ Ring → 1 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
11 |
9 3
|
ring0cl |
⊢ ( 𝑆 ∈ Ring → 0 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
12 |
10 11
|
jca |
⊢ ( 𝑆 ∈ Ring → ( 1 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 0 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
13 |
7 12
|
syl |
⊢ ( 𝑀 ∈ LMod → ( 1 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 0 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
14 |
13
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 1 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 0 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑉 ) → ( 1 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 0 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
16 |
|
ifcl |
⊢ ( ( 1 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 0 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) → if ( 𝑥 = 𝑋 , 1 , 0 ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
17 |
15 16
|
syl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑉 ) → if ( 𝑥 = 𝑋 , 1 , 0 ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
18 |
17 5
|
fmptd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
19 |
|
fvex |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V |
20 |
|
simp2 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → 𝑉 ∈ 𝒫 𝐵 ) |
21 |
|
elmapg |
⊢ ( ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ↔ 𝐹 : 𝑉 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
22 |
19 20 21
|
sylancr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ↔ 𝐹 : 𝑉 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
23 |
18 22
|
mpbird |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
24 |
1
|
pweqi |
⊢ 𝒫 𝐵 = 𝒫 ( Base ‘ 𝑀 ) |
25 |
24
|
eleq2i |
⊢ ( 𝑉 ∈ 𝒫 𝐵 ↔ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
26 |
25
|
biimpi |
⊢ ( 𝑉 ∈ 𝒫 𝐵 → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
27 |
26
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
28 |
|
lincval |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑦 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑦 ) ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) ) ) |
29 |
6 23 27 28
|
syl3anc |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑦 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑦 ) ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) ) ) |
30 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
31 |
|
lmodgrp |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ Grp ) |
32 |
31
|
grpmndd |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ Mnd ) |
33 |
32
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → 𝑀 ∈ Mnd ) |
34 |
|
simp3 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
35 |
6
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝑉 ) → 𝑀 ∈ LMod ) |
36 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑋 ↔ 𝑦 = 𝑋 ) ) |
37 |
36
|
ifbid |
⊢ ( 𝑥 = 𝑦 → if ( 𝑥 = 𝑋 , 1 , 0 ) = if ( 𝑦 = 𝑋 , 1 , 0 ) ) |
38 |
|
simpr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ∈ 𝑉 ) |
39 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
40 |
2 39 4
|
lmod1cl |
⊢ ( 𝑀 ∈ LMod → 1 ∈ ( Base ‘ 𝑆 ) ) |
41 |
40
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → 1 ∈ ( Base ‘ 𝑆 ) ) |
42 |
41
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝑉 ) → 1 ∈ ( Base ‘ 𝑆 ) ) |
43 |
2 39 3
|
lmod0cl |
⊢ ( 𝑀 ∈ LMod → 0 ∈ ( Base ‘ 𝑆 ) ) |
44 |
43
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → 0 ∈ ( Base ‘ 𝑆 ) ) |
45 |
44
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝑉 ) → 0 ∈ ( Base ‘ 𝑆 ) ) |
46 |
42 45
|
ifcld |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝑉 ) → if ( 𝑦 = 𝑋 , 1 , 0 ) ∈ ( Base ‘ 𝑆 ) ) |
47 |
5 37 38 46
|
fvmptd3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑦 ) = if ( 𝑦 = 𝑋 , 1 , 0 ) ) |
48 |
47 46
|
eqeltrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
49 |
|
elelpwi |
⊢ ( ( 𝑦 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐵 ) → 𝑦 ∈ 𝐵 ) |
50 |
49
|
expcom |
⊢ ( 𝑉 ∈ 𝒫 𝐵 → ( 𝑦 ∈ 𝑉 → 𝑦 ∈ 𝐵 ) ) |
51 |
50
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑦 ∈ 𝑉 → 𝑦 ∈ 𝐵 ) ) |
52 |
51
|
imp |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ∈ 𝐵 ) |
53 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
54 |
1 2 53 39
|
lmodvscl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑦 ) ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
55 |
35 48 52 54
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑦 ) ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
56 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑦 ) ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑦 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑦 ) ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) |
57 |
55 56
|
fmptd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑦 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑦 ) ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) : 𝑉 ⟶ 𝐵 ) |
58 |
|
fveq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑣 ) ) |
59 |
|
id |
⊢ ( 𝑦 = 𝑣 → 𝑦 = 𝑣 ) |
60 |
58 59
|
oveq12d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝐹 ‘ 𝑦 ) ( ·𝑠 ‘ 𝑀 ) 𝑦 ) = ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) |
61 |
60
|
cbvmptv |
⊢ ( 𝑦 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑦 ) ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) |
62 |
|
fvexd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 0g ‘ 𝑀 ) ∈ V ) |
63 |
|
ovexd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ∈ V ) |
64 |
61 20 62 63
|
mptsuppd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑦 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑦 ) ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) supp ( 0g ‘ 𝑀 ) ) = { 𝑣 ∈ 𝑉 ∣ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ≠ ( 0g ‘ 𝑀 ) } ) |
65 |
|
2a1 |
⊢ ( 𝑣 = 𝑋 → ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) → ( ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ≠ ( 0g ‘ 𝑀 ) → 𝑣 = 𝑋 ) ) ) |
66 |
|
simprr |
⊢ ( ( ¬ 𝑣 = 𝑋 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) ) → 𝑣 ∈ 𝑉 ) |
67 |
4
|
fvexi |
⊢ 1 ∈ V |
68 |
3
|
fvexi |
⊢ 0 ∈ V |
69 |
67 68
|
ifex |
⊢ if ( 𝑣 = 𝑋 , 1 , 0 ) ∈ V |
70 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑣 → ( 𝑥 = 𝑋 ↔ 𝑣 = 𝑋 ) ) |
71 |
70
|
ifbid |
⊢ ( 𝑥 = 𝑣 → if ( 𝑥 = 𝑋 , 1 , 0 ) = if ( 𝑣 = 𝑋 , 1 , 0 ) ) |
72 |
71 5
|
fvmptg |
⊢ ( ( 𝑣 ∈ 𝑉 ∧ if ( 𝑣 = 𝑋 , 1 , 0 ) ∈ V ) → ( 𝐹 ‘ 𝑣 ) = if ( 𝑣 = 𝑋 , 1 , 0 ) ) |
73 |
66 69 72
|
sylancl |
⊢ ( ( ¬ 𝑣 = 𝑋 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) ) → ( 𝐹 ‘ 𝑣 ) = if ( 𝑣 = 𝑋 , 1 , 0 ) ) |
74 |
|
iffalse |
⊢ ( ¬ 𝑣 = 𝑋 → if ( 𝑣 = 𝑋 , 1 , 0 ) = 0 ) |
75 |
74
|
adantr |
⊢ ( ( ¬ 𝑣 = 𝑋 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) ) → if ( 𝑣 = 𝑋 , 1 , 0 ) = 0 ) |
76 |
73 75
|
eqtrd |
⊢ ( ( ¬ 𝑣 = 𝑋 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) ) → ( 𝐹 ‘ 𝑣 ) = 0 ) |
77 |
76
|
oveq1d |
⊢ ( ( ¬ 𝑣 = 𝑋 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = ( 0 ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) |
78 |
6
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) → 𝑀 ∈ LMod ) |
79 |
78
|
adantl |
⊢ ( ( ¬ 𝑣 = 𝑋 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) ) → 𝑀 ∈ LMod ) |
80 |
|
elelpwi |
⊢ ( ( 𝑣 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐵 ) → 𝑣 ∈ 𝐵 ) |
81 |
80
|
expcom |
⊢ ( 𝑉 ∈ 𝒫 𝐵 → ( 𝑣 ∈ 𝑉 → 𝑣 ∈ 𝐵 ) ) |
82 |
81
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑣 ∈ 𝑉 → 𝑣 ∈ 𝐵 ) ) |
83 |
82
|
imp |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ 𝐵 ) |
84 |
83
|
adantl |
⊢ ( ( ¬ 𝑣 = 𝑋 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) ) → 𝑣 ∈ 𝐵 ) |
85 |
1 2 53 3 30
|
lmod0vs |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑣 ∈ 𝐵 ) → ( 0 ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = ( 0g ‘ 𝑀 ) ) |
86 |
79 84 85
|
syl2anc |
⊢ ( ( ¬ 𝑣 = 𝑋 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) ) → ( 0 ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = ( 0g ‘ 𝑀 ) ) |
87 |
77 86
|
eqtrd |
⊢ ( ( ¬ 𝑣 = 𝑋 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = ( 0g ‘ 𝑀 ) ) |
88 |
87
|
neeq1d |
⊢ ( ( ¬ 𝑣 = 𝑋 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ≠ ( 0g ‘ 𝑀 ) ↔ ( 0g ‘ 𝑀 ) ≠ ( 0g ‘ 𝑀 ) ) ) |
89 |
|
eqneqall |
⊢ ( ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) → ( ( 0g ‘ 𝑀 ) ≠ ( 0g ‘ 𝑀 ) → 𝑣 = 𝑋 ) ) |
90 |
30 89
|
ax-mp |
⊢ ( ( 0g ‘ 𝑀 ) ≠ ( 0g ‘ 𝑀 ) → 𝑣 = 𝑋 ) |
91 |
88 90
|
syl6bi |
⊢ ( ( ¬ 𝑣 = 𝑋 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ≠ ( 0g ‘ 𝑀 ) → 𝑣 = 𝑋 ) ) |
92 |
91
|
ex |
⊢ ( ¬ 𝑣 = 𝑋 → ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) → ( ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ≠ ( 0g ‘ 𝑀 ) → 𝑣 = 𝑋 ) ) ) |
93 |
65 92
|
pm2.61i |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑣 ∈ 𝑉 ) → ( ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ≠ ( 0g ‘ 𝑀 ) → 𝑣 = 𝑋 ) ) |
94 |
93
|
ralrimiva |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ∀ 𝑣 ∈ 𝑉 ( ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ≠ ( 0g ‘ 𝑀 ) → 𝑣 = 𝑋 ) ) |
95 |
|
rabsssn |
⊢ ( { 𝑣 ∈ 𝑉 ∣ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ≠ ( 0g ‘ 𝑀 ) } ⊆ { 𝑋 } ↔ ∀ 𝑣 ∈ 𝑉 ( ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ≠ ( 0g ‘ 𝑀 ) → 𝑣 = 𝑋 ) ) |
96 |
94 95
|
sylibr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → { 𝑣 ∈ 𝑉 ∣ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ≠ ( 0g ‘ 𝑀 ) } ⊆ { 𝑋 } ) |
97 |
64 96
|
eqsstrd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑦 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑦 ) ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) supp ( 0g ‘ 𝑀 ) ) ⊆ { 𝑋 } ) |
98 |
1 30 33 20 34 57 97
|
gsumpt |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 Σg ( 𝑦 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑦 ) ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) ) = ( ( 𝑦 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑦 ) ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) ‘ 𝑋 ) ) |
99 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ∈ V |
100 |
|
fveq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑋 ) ) |
101 |
|
id |
⊢ ( 𝑦 = 𝑋 → 𝑦 = 𝑋 ) |
102 |
100 101
|
oveq12d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ‘ 𝑦 ) ( ·𝑠 ‘ 𝑀 ) 𝑦 ) = ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) |
103 |
102 56
|
fvmptg |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ∈ V ) → ( ( 𝑦 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑦 ) ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) ‘ 𝑋 ) = ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) |
104 |
34 99 103
|
sylancl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑦 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑦 ) ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) ‘ 𝑋 ) = ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) |
105 |
|
iftrue |
⊢ ( 𝑥 = 𝑋 → if ( 𝑥 = 𝑋 , 1 , 0 ) = 1 ) |
106 |
105 5
|
fvmptg |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 1 ∈ V ) → ( 𝐹 ‘ 𝑋 ) = 1 ) |
107 |
34 67 106
|
sylancl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑋 ) = 1 ) |
108 |
107
|
oveq1d |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = ( 1 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) |
109 |
|
elelpwi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐵 ) → 𝑋 ∈ 𝐵 ) |
110 |
109
|
ancoms |
⊢ ( ( 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝐵 ) |
111 |
110
|
3adant1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝐵 ) |
112 |
1 2 53 4
|
lmodvs1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ( 1 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = 𝑋 ) |
113 |
6 111 112
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 1 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = 𝑋 ) |
114 |
104 108 113
|
3eqtrd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑦 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑦 ) ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) ‘ 𝑋 ) = 𝑋 ) |
115 |
29 98 114
|
3eqtrd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = 𝑋 ) |