Metamath Proof Explorer


Theorem gsumz

Description: Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014)

Ref Expression
Hypothesis gsumz.z
|- .0. = ( 0g ` G )
Assertion gsumz
|- ( ( G e. Mnd /\ A e. V ) -> ( G gsum ( k e. A |-> .0. ) ) = .0. )

Proof

Step Hyp Ref Expression
1 gsumz.z
 |-  .0. = ( 0g ` G )
2 eqid
 |-  ( Base ` G ) = ( Base ` G )
3 eqid
 |-  ( +g ` G ) = ( +g ` G )
4 eqid
 |-  { x e. ( Base ` G ) | A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) = y /\ ( y ( +g ` G ) x ) = y ) } = { x e. ( Base ` G ) | A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) = y /\ ( y ( +g ` G ) x ) = y ) }
5 simpl
 |-  ( ( G e. Mnd /\ A e. V ) -> G e. Mnd )
6 simpr
 |-  ( ( G e. Mnd /\ A e. V ) -> A e. V )
7 1 fvexi
 |-  .0. e. _V
8 7 snid
 |-  .0. e. { .0. }
9 2 1 3 4 gsumvallem2
 |-  ( G e. Mnd -> { x e. ( Base ` G ) | A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) = y /\ ( y ( +g ` G ) x ) = y ) } = { .0. } )
10 8 9 eleqtrrid
 |-  ( G e. Mnd -> .0. e. { x e. ( Base ` G ) | A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) = y /\ ( y ( +g ` G ) x ) = y ) } )
11 10 ad2antrr
 |-  ( ( ( G e. Mnd /\ A e. V ) /\ k e. A ) -> .0. e. { x e. ( Base ` G ) | A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) = y /\ ( y ( +g ` G ) x ) = y ) } )
12 11 fmpttd
 |-  ( ( G e. Mnd /\ A e. V ) -> ( k e. A |-> .0. ) : A --> { x e. ( Base ` G ) | A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) = y /\ ( y ( +g ` G ) x ) = y ) } )
13 2 1 3 4 5 6 12 gsumval1
 |-  ( ( G e. Mnd /\ A e. V ) -> ( G gsum ( k e. A |-> .0. ) ) = .0. )