Metamath Proof Explorer


Theorem lcosn0

Description: Properties of a linear combination over a singleton mapping to 0. (Contributed by AV, 12-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Hypotheses lincval1.b B = Base M
lincval1.s S = Scalar M
lincval1.r R = Base S
lincval1.f F = V 0 S
Assertion lcosn0 M LMod V B F R V finSupp 0 S F F linC M V = 0 M

Proof

Step Hyp Ref Expression
1 lincval1.b B = Base M
2 lincval1.s S = Scalar M
3 lincval1.r R = Base S
4 lincval1.f F = V 0 S
5 simpr M LMod V B V B
6 eqid 0 S = 0 S
7 2 3 6 lmod0cl M LMod 0 S R
8 7 adantr M LMod V B 0 S R
9 3 fvexi R V
10 9 a1i M LMod V B R V
11 4 mapsnop V B 0 S R R V F R V
12 5 8 10 11 syl3anc M LMod V B F R V
13 elmapi F R V F : V R
14 12 13 syl M LMod V B F : V R
15 snfi V Fin
16 15 a1i M LMod V B V Fin
17 fvex 0 S V
18 17 a1i M LMod V B 0 S V
19 14 16 18 fdmfifsupp M LMod V B finSupp 0 S F
20 1 2 3 4 lincval1 M LMod V B F linC M V = 0 M
21 12 19 20 3jca M LMod V B F R V finSupp 0 S F F linC M V = 0 M