Metamath Proof Explorer


Theorem lincval1

Description: The linear combination over a singleton mapping to 0. (Contributed by AV, 12-Apr-2019)

Ref Expression
Hypotheses lincval1.b B = Base M
lincval1.s S = Scalar M
lincval1.r R = Base S
lincval1.f F = V 0 S
Assertion lincval1 M LMod V B F linC M V = 0 M

Proof

Step Hyp Ref Expression
1 lincval1.b B = Base M
2 lincval1.s S = Scalar M
3 lincval1.r R = Base S
4 lincval1.f F = V 0 S
5 eqid 0 S = 0 S
6 2 3 5 lmod0cl M LMod 0 S R
7 6 adantr M LMod V B 0 S R
8 eqid M = M
9 1 2 3 8 4 lincvalsn M LMod V B 0 S R F linC M V = 0 S M V
10 7 9 mpd3an3 M LMod V B F linC M V = 0 S M V
11 eqid 0 M = 0 M
12 1 2 8 5 11 lmod0vs M LMod V B 0 S M V = 0 M
13 10 12 eqtrd M LMod V B F linC M V = 0 M