Metamath Proof Explorer


Theorem lincval1

Description: The linear combination over a singleton mapping to 0. (Contributed by AV, 12-Apr-2019)

Ref Expression
Hypotheses lincval1.b B=BaseM
lincval1.s S=ScalarM
lincval1.r R=BaseS
lincval1.f F=V0S
Assertion lincval1 MLModVBFlinCMV=0M

Proof

Step Hyp Ref Expression
1 lincval1.b B=BaseM
2 lincval1.s S=ScalarM
3 lincval1.r R=BaseS
4 lincval1.f F=V0S
5 eqid 0S=0S
6 2 3 5 lmod0cl MLMod0SR
7 6 adantr MLModVB0SR
8 eqid M=M
9 1 2 3 8 4 lincvalsn MLModVB0SRFlinCMV=0SMV
10 7 9 mpd3an3 MLModVBFlinCMV=0SMV
11 eqid 0M=0M
12 1 2 8 5 11 lmod0vs MLModVB0SMV=0M
13 10 12 eqtrd MLModVBFlinCMV=0M