Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Linear algebra (extension)
Linear combinations
lincval1
Next ⟩
lcosn0
Metamath Proof Explorer
Ascii
Unicode
Theorem
lincval1
Description:
The linear combination over a singleton mapping to 0.
(Contributed by
AV
, 12-Apr-2019)
Ref
Expression
Hypotheses
lincval1.b
⊢
B
=
Base
M
lincval1.s
⊢
S
=
Scalar
⁡
M
lincval1.r
⊢
R
=
Base
S
lincval1.f
⊢
F
=
V
0
S
Assertion
lincval1
⊢
M
∈
LMod
∧
V
∈
B
→
F
linC
⁡
M
V
=
0
M
Proof
Step
Hyp
Ref
Expression
1
lincval1.b
⊢
B
=
Base
M
2
lincval1.s
⊢
S
=
Scalar
⁡
M
3
lincval1.r
⊢
R
=
Base
S
4
lincval1.f
⊢
F
=
V
0
S
5
eqid
⊢
0
S
=
0
S
6
2
3
5
lmod0cl
⊢
M
∈
LMod
→
0
S
∈
R
7
6
adantr
⊢
M
∈
LMod
∧
V
∈
B
→
0
S
∈
R
8
eqid
⊢
⋅
M
=
⋅
M
9
1
2
3
8
4
lincvalsn
⊢
M
∈
LMod
∧
V
∈
B
∧
0
S
∈
R
→
F
linC
⁡
M
V
=
0
S
⋅
M
V
10
7
9
mpd3an3
⊢
M
∈
LMod
∧
V
∈
B
→
F
linC
⁡
M
V
=
0
S
⋅
M
V
11
eqid
⊢
0
M
=
0
M
12
1
2
8
5
11
lmod0vs
⊢
M
∈
LMod
∧
V
∈
B
→
0
S
⋅
M
V
=
0
M
13
10
12
eqtrd
⊢
M
∈
LMod
∧
V
∈
B
→
F
linC
⁡
M
V
=
0
M