Step |
Hyp |
Ref |
Expression |
1 |
|
lincval1.b |
|- B = ( Base ` M ) |
2 |
|
lincval1.s |
|- S = ( Scalar ` M ) |
3 |
|
lincval1.r |
|- R = ( Base ` S ) |
4 |
|
lincval1.f |
|- F = { <. V , ( 0g ` S ) >. } |
5 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
6 |
2 3 5
|
lmod0cl |
|- ( M e. LMod -> ( 0g ` S ) e. R ) |
7 |
6
|
adantr |
|- ( ( M e. LMod /\ V e. B ) -> ( 0g ` S ) e. R ) |
8 |
|
eqid |
|- ( .s ` M ) = ( .s ` M ) |
9 |
1 2 3 8 4
|
lincvalsn |
|- ( ( M e. LMod /\ V e. B /\ ( 0g ` S ) e. R ) -> ( F ( linC ` M ) { V } ) = ( ( 0g ` S ) ( .s ` M ) V ) ) |
10 |
7 9
|
mpd3an3 |
|- ( ( M e. LMod /\ V e. B ) -> ( F ( linC ` M ) { V } ) = ( ( 0g ` S ) ( .s ` M ) V ) ) |
11 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
12 |
1 2 8 5 11
|
lmod0vs |
|- ( ( M e. LMod /\ V e. B ) -> ( ( 0g ` S ) ( .s ` M ) V ) = ( 0g ` M ) ) |
13 |
10 12
|
eqtrd |
|- ( ( M e. LMod /\ V e. B ) -> ( F ( linC ` M ) { V } ) = ( 0g ` M ) ) |