Metamath Proof Explorer


Theorem lincval1

Description: The linear combination over a singleton mapping to 0. (Contributed by AV, 12-Apr-2019)

Ref Expression
Hypotheses lincval1.b
|- B = ( Base ` M )
lincval1.s
|- S = ( Scalar ` M )
lincval1.r
|- R = ( Base ` S )
lincval1.f
|- F = { <. V , ( 0g ` S ) >. }
Assertion lincval1
|- ( ( M e. LMod /\ V e. B ) -> ( F ( linC ` M ) { V } ) = ( 0g ` M ) )

Proof

Step Hyp Ref Expression
1 lincval1.b
 |-  B = ( Base ` M )
2 lincval1.s
 |-  S = ( Scalar ` M )
3 lincval1.r
 |-  R = ( Base ` S )
4 lincval1.f
 |-  F = { <. V , ( 0g ` S ) >. }
5 eqid
 |-  ( 0g ` S ) = ( 0g ` S )
6 2 3 5 lmod0cl
 |-  ( M e. LMod -> ( 0g ` S ) e. R )
7 6 adantr
 |-  ( ( M e. LMod /\ V e. B ) -> ( 0g ` S ) e. R )
8 eqid
 |-  ( .s ` M ) = ( .s ` M )
9 1 2 3 8 4 lincvalsn
 |-  ( ( M e. LMod /\ V e. B /\ ( 0g ` S ) e. R ) -> ( F ( linC ` M ) { V } ) = ( ( 0g ` S ) ( .s ` M ) V ) )
10 7 9 mpd3an3
 |-  ( ( M e. LMod /\ V e. B ) -> ( F ( linC ` M ) { V } ) = ( ( 0g ` S ) ( .s ` M ) V ) )
11 eqid
 |-  ( 0g ` M ) = ( 0g ` M )
12 1 2 8 5 11 lmod0vs
 |-  ( ( M e. LMod /\ V e. B ) -> ( ( 0g ` S ) ( .s ` M ) V ) = ( 0g ` M ) )
13 10 12 eqtrd
 |-  ( ( M e. LMod /\ V e. B ) -> ( F ( linC ` M ) { V } ) = ( 0g ` M ) )