Metamath Proof Explorer


Theorem llnbase

Description: A lattice line is a lattice element. (Contributed by NM, 16-Jun-2012)

Ref Expression
Hypotheses llnbase.b B=BaseK
llnbase.n N=LLinesK
Assertion llnbase XNXB

Proof

Step Hyp Ref Expression
1 llnbase.b B=BaseK
2 llnbase.n N=LLinesK
3 n0i XN¬N=
4 2 eqeq1i N=LLinesK=
5 3 4 sylnib XN¬LLinesK=
6 fvprc ¬KVLLinesK=
7 5 6 nsyl2 XNKV
8 eqid K=K
9 eqid AtomsK=AtomsK
10 1 8 9 2 islln KVXNXBpAtomsKpKX
11 10 simprbda KVXNXB
12 7 11 mpancom XNXB