Metamath Proof Explorer


Theorem llni

Description: Condition implying a lattice line. (Contributed by NM, 17-Jun-2012)

Ref Expression
Hypotheses llnset.b B=BaseK
llnset.c C=K
llnset.a A=AtomsK
llnset.n N=LLinesK
Assertion llni KDXBPAPCXXN

Proof

Step Hyp Ref Expression
1 llnset.b B=BaseK
2 llnset.c C=K
3 llnset.a A=AtomsK
4 llnset.n N=LLinesK
5 simpl2 KDXBPAPCXXB
6 breq1 p=PpCXPCX
7 6 rspcev PAPCXpApCX
8 7 3ad2antl3 KDXBPAPCXpApCX
9 simpl1 KDXBPAPCXKD
10 1 2 3 4 islln KDXNXBpApCX
11 9 10 syl KDXBPAPCXXNXBpApCX
12 5 8 11 mpbir2and KDXBPAPCXXN