Metamath Proof Explorer


Theorem lmat22e12

Description: Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020)

Ref Expression
Hypotheses lmat22.m M=litMat⟨“⟨“AB”⟩⟨“CD”⟩”⟩
lmat22.a φAV
lmat22.b φBV
lmat22.c φCV
lmat22.d φDV
Assertion lmat22e12 φ1M2=B

Proof

Step Hyp Ref Expression
1 lmat22.m M=litMat⟨“⟨“AB”⟩⟨“CD”⟩”⟩
2 lmat22.a φAV
3 lmat22.b φBV
4 lmat22.c φCV
5 lmat22.d φDV
6 2nn 2
7 6 a1i φ2
8 2 3 s2cld φ⟨“AB”⟩WordV
9 4 5 s2cld φ⟨“CD”⟩WordV
10 8 9 s2cld φ⟨“⟨“AB”⟩⟨“CD”⟩”⟩WordWordV
11 s2len ⟨“⟨“AB”⟩⟨“CD”⟩”⟩=2
12 11 a1i φ⟨“⟨“AB”⟩⟨“CD”⟩”⟩=2
13 1 2 3 4 5 lmat22lem φi0..^2⟨“⟨“AB”⟩⟨“CD”⟩”⟩i=2
14 0nn0 00
15 1nn0 10
16 1le2 12
17 6 nnrei 2
18 17 leidi 22
19 0p1e1 0+1=1
20 1p1e2 1+1=2
21 s2cli ⟨“AB”⟩WordV
22 s2fv0 ⟨“AB”⟩WordV⟨“⟨“AB”⟩⟨“CD”⟩”⟩0=⟨“AB”⟩
23 21 22 ax-mp ⟨“⟨“AB”⟩⟨“CD”⟩”⟩0=⟨“AB”⟩
24 s2fv1 BV⟨“AB”⟩1=B
25 3 24 syl φ⟨“AB”⟩1=B
26 1 7 10 12 13 14 15 16 18 19 20 23 25 lmatfvlem φ1M2=B