Metamath Proof Explorer


Theorem lmbr3v

Description: Express the binary relation "sequence F converges to point P " in a metric space using an arbitrary upper set of integers. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypothesis lmbr3v.1 φJTopOnX
Assertion lmbr3v φFtJPFX𝑝𝑚PXuJPujkjkdomFFku

Proof

Step Hyp Ref Expression
1 lmbr3v.1 φJTopOnX
2 eqid 0=0
3 0zd φ0
4 1 2 3 lmbr2 φFtJPFX𝑝𝑚PXuJPuj0kjkdomFFku
5 0z 0
6 2 rexuz3 0j0kjkdomFFkujkjkdomFFku
7 5 6 ax-mp j0kjkdomFFkujkjkdomFFku
8 7 imbi2i Puj0kjkdomFFkuPujkjkdomFFku
9 8 ralbii uJPuj0kjkdomFFkuuJPujkjkdomFFku
10 9 3anbi3i FX𝑝𝑚PXuJPuj0kjkdomFFkuFX𝑝𝑚PXuJPujkjkdomFFku
11 4 10 bitrdi φFtJPFX𝑝𝑚PXuJPujkjkdomFFku