Metamath Proof Explorer


Theorem lmodplusg

Description: The additive operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis lmodstr.w W=BasendxB+ndx+˙ScalarndxFndx·˙
Assertion lmodplusg +˙X+˙=+W

Proof

Step Hyp Ref Expression
1 lmodstr.w W=BasendxB+ndx+˙ScalarndxFndx·˙
2 1 lmodstr WStruct16
3 plusgid +𝑔=Slot+ndx
4 snsstp2 +ndx+˙BasendxB+ndx+˙ScalarndxF
5 ssun1 BasendxB+ndx+˙ScalarndxFBasendxB+ndx+˙ScalarndxFndx·˙
6 5 1 sseqtrri BasendxB+ndx+˙ScalarndxFW
7 4 6 sstri +ndx+˙W
8 2 3 7 strfv +˙X+˙=+W