Metamath Proof Explorer


Theorem lmodvsca

Description: The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis lmodstr.w W = Base ndx B + ndx + ˙ Scalar ndx F ndx · ˙
Assertion lmodvsca · ˙ X · ˙ = W

Proof

Step Hyp Ref Expression
1 lmodstr.w W = Base ndx B + ndx + ˙ Scalar ndx F ndx · ˙
2 1 lmodstr W Struct 1 6
3 vscaid 𝑠 = Slot ndx
4 ssun2 ndx · ˙ Base ndx B + ndx + ˙ Scalar ndx F ndx · ˙
5 4 1 sseqtrri ndx · ˙ W
6 2 3 5 strfv · ˙ X · ˙ = W