Metamath Proof Explorer


Theorem lmodvsca

Description: The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis lmodstr.w W=BasendxB+ndx+˙ScalarndxFndx·˙
Assertion lmodvsca ·˙X·˙=W

Proof

Step Hyp Ref Expression
1 lmodstr.w W=BasendxB+ndx+˙ScalarndxFndx·˙
2 1 lmodstr WStruct16
3 vscaid 𝑠=Slotndx
4 ssun2 ndx·˙BasendxB+ndx+˙ScalarndxFndx·˙
5 4 1 sseqtrri ndx·˙W
6 2 3 5 strfv ·˙X·˙=W