Metamath Proof Explorer


Theorem logb2aval

Description: Define the value of the logb function, the logarithm generalized to an arbitrary base, when used in the 2-argument form logb <. B , X >. (Contributed by David A. Wheeler, 21-Jan-2017) (Revised by David A. Wheeler, 16-Jul-2017)

Ref Expression
Assertion logb2aval B 0 1 X 0 log B X = log X log B

Proof

Step Hyp Ref Expression
1 df-ov log B X = log B X
2 logbval B 0 1 X 0 log B X = log X log B
3 1 2 eqtr3id B 0 1 X 0 log B X = log X log B