Metamath Proof Explorer


Theorem logm1

Description: The natural logarithm of negative 1 . (Contributed by Paul Chapman, 21-Apr-2008) (Revised by Mario Carneiro, 13-May-2014)

Ref Expression
Assertion logm1 log-1=iπ

Proof

Step Hyp Ref Expression
1 1rp 1+
2 logneg 1+log-1=log1+iπ
3 1 2 ax-mp log-1=log1+iπ
4 log1 log1=0
5 4 oveq1i log1+iπ=0+iπ
6 ax-icn i
7 picn π
8 6 7 mulcli iπ
9 8 addlidi 0+iπ=iπ
10 3 5 9 3eqtri log-1=iπ