Metamath Proof Explorer


Definition df-log

Description: Define the natural logarithm function on complex numbers. It is defined as the principal value, that is, the inverse of the exponential whose imaginary part lies in the interval (-pi, pi]. See http://en.wikipedia.org/wiki/Natural_logarithm and https://en.wikipedia.org/wiki/Complex_logarithm . (Contributed by Paul Chapman, 21-Apr-2008)

Ref Expression
Assertion df-log log=exp-1ππ-1

Detailed syntax breakdown

Step Hyp Ref Expression
0 clog classlog
1 ce classexp
2 cim class
3 2 ccnv class-1
4 cpi classπ
5 4 cneg classπ
6 cioc class.
7 5 4 6 co classππ
8 3 7 cima class-1ππ
9 1 8 cres classexp-1ππ
10 9 ccnv classexp-1ππ-1
11 0 10 wceq wfflog=exp-1ππ-1