Metamath Proof Explorer


Theorem lubfun

Description: The LUB is a function. (Contributed by NM, 9-Sep-2018)

Ref Expression
Hypothesis lubfun.u U=lubK
Assertion lubfun FunU

Proof

Step Hyp Ref Expression
1 lubfun.u U=lubK
2 funmpt Funs𝒫BaseKιxBaseK|ysyKxzBaseKysyKzxKz
3 funres Funs𝒫BaseKιxBaseK|ysyKxzBaseKysyKzxKzFuns𝒫BaseKιxBaseK|ysyKxzBaseKysyKzxKzs|∃!xBaseKysyKxzBaseKysyKzxKz
4 2 3 ax-mp Funs𝒫BaseKιxBaseK|ysyKxzBaseKysyKzxKzs|∃!xBaseKysyKxzBaseKysyKzxKz
5 eqid BaseK=BaseK
6 eqid K=K
7 biid ysyKxzBaseKysyKzxKzysyKxzBaseKysyKzxKz
8 id KVKV
9 5 6 1 7 8 lubfval KVU=s𝒫BaseKιxBaseK|ysyKxzBaseKysyKzxKzs|∃!xBaseKysyKxzBaseKysyKzxKz
10 9 funeqd KVFunUFuns𝒫BaseKιxBaseK|ysyKxzBaseKysyKzxKzs|∃!xBaseKysyKxzBaseKysyKzxKz
11 4 10 mpbiri KVFunU
12 fun0 Fun
13 fvprc ¬KVlubK=
14 1 13 eqtrid ¬KVU=
15 14 funeqd ¬KVFunUFun
16 12 15 mpbiri ¬KVFunU
17 11 16 pm2.61i FunU