Metamath Proof Explorer


Theorem lukshefth2

Description: Lemma for renicax . (Contributed by NM, 31-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion lukshefth2 τ θ θ τ θ τ

Proof

Step Hyp Ref Expression
1 lukshef-ax1 ψ χ φ θ θ θ θ χ ψ θ ψ θ
2 lukshef-ax1 ψ χ φ θ θ θ θ χ ψ θ ψ θ θ θ θ θ θ θ θ ψ χ φ θ ψ χ φ θ
3 1 2 nic-mp θ θ θ θ ψ χ φ θ ψ χ φ θ
4 lukshefth1 τ φ φ τ φ τ θ θ θ φ φ φ
5 lukshef-ax1 θ θ θ θ ψ χ φ θ ψ χ φ θ φ φ φ φ ψ χ φ θ θ θ θ θ φ θ θ θ θ φ
6 lukshef-ax1 θ θ θ θ ψ χ φ θ ψ χ φ θ φ φ φ φ ψ χ φ θ θ θ θ θ φ θ θ θ θ φ τ φ φ τ φ τ θ θ θ τ φ φ τ φ τ θ θ θ τ φ φ τ φ τ θ θ θ τ φ φ τ φ τ θ θ θ φ φ φ θ θ θ θ ψ χ φ θ ψ χ φ θ τ φ φ τ φ τ θ θ θ θ θ θ θ ψ χ φ θ ψ χ φ θ τ φ φ τ φ τ θ θ θ
7 5 6 nic-mp τ φ φ τ φ τ θ θ θ φ φ φ θ θ θ θ ψ χ φ θ ψ χ φ θ τ φ φ τ φ τ θ θ θ θ θ θ θ ψ χ φ θ ψ χ φ θ τ φ φ τ φ τ θ θ θ
8 4 7 nic-mp θ θ θ θ ψ χ φ θ ψ χ φ θ τ φ φ τ φ τ θ θ θ
9 3 8 nic-mp θ θ θ
10 lukshef-ax1 θ θ θ τ τ τ τ θ θ τ θ τ
11 9 10 nic-mp τ θ θ τ θ τ