Metamath Proof Explorer


Theorem renicax

Description: A rederivation of nic-ax from lukshef-ax1 , proving that lukshef-ax1 with nic-mp can be used as a complete axiomatization of propositional calculus. (Contributed by Anthony Hart, 31-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion renicax φ χ ψ τ τ τ θ χ φ θ φ θ

Proof

Step Hyp Ref Expression
1 lukshefth1 θ χ φ θ φ θ τ τ τ φ χ ψ
2 lukshefth2 θ χ φ θ φ θ τ τ τ φ χ ψ φ χ ψ θ χ φ θ φ θ τ τ τ φ χ ψ θ χ φ θ φ θ τ τ τ
3 1 2 nic-mp φ χ ψ θ χ φ θ φ θ τ τ τ
4 lukshefth2 τ τ τ θ χ φ θ φ θ θ χ φ θ φ θ τ τ τ θ χ φ θ φ θ τ τ τ
5 lukshef-ax1 τ τ τ θ χ φ θ φ θ θ χ φ θ φ θ τ τ τ θ χ φ θ φ θ τ τ τ φ χ ψ φ χ ψ φ χ ψ φ χ ψ θ χ φ θ φ θ τ τ τ τ τ τ θ χ φ θ φ θ φ χ ψ τ τ τ θ χ φ θ φ θ φ χ ψ
6 4 5 nic-mp φ χ ψ θ χ φ θ φ θ τ τ τ τ τ τ θ χ φ θ φ θ φ χ ψ τ τ τ θ χ φ θ φ θ φ χ ψ
7 3 6 nic-mp τ τ τ θ χ φ θ φ θ φ χ ψ
8 lukshefth2 τ τ τ θ χ φ θ φ θ φ χ ψ φ χ ψ τ τ τ θ χ φ θ φ θ φ χ ψ τ τ τ θ χ φ θ φ θ
9 7 8 nic-mp φ χ ψ τ τ τ θ χ φ θ φ θ