Metamath Proof Explorer


Theorem nic-ax

Description: Nicod's axiom derived from the standard ones. SeeIntroduction to Mathematical Philosophy by B. Russell, p. 152. Like meredith , the usual axioms can be derived from this and vice versa. Unlike meredith , Nicod uses a different connective ('nand'), so another form of modus ponens must be used in proofs, e.g., { nic-ax , nic-mp } is equivalent to { luk-1 , luk-2 , luk-3 , ax-mp } . In a pure (standalone) treatment of Nicod's axiom, this theorem would be changed to an axiom ($a statement). (Contributed by Jeff Hoffman, 19-Nov-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nic-ax φχψτττθχφθφθ

Proof

Step Hyp Ref Expression
1 nannan φχψφχψ
2 1 biimpi φχψφχψ
3 simpl χψχ
4 3 imim2i φχψφχ
5 imnan θ¬χ¬θχ
6 df-nan θχ¬θχ
7 5 6 bitr4i θ¬χθχ
8 con3 φχ¬χ¬φ
9 8 imim2d φχθ¬χθ¬φ
10 imnan φ¬θ¬φθ
11 con2b θ¬φφ¬θ
12 df-nan φθ¬φθ
13 10 11 12 3bitr4ri φθθ¬φ
14 9 13 imbitrrdi φχθ¬χφθ
15 7 14 biimtrrid φχθχφθ
16 nanim θχφθθχφθφθ
17 15 16 sylib φχθχφθφθ
18 2 4 17 3syl φχψθχφθφθ
19 pm4.24 τττ
20 19 biimpi τττ
21 nannan ττττττ
22 20 21 mpbir τττ
23 18 22 jctil φχψτττθχφθφθ
24 nannan φχψτττθχφθφθφχψτττθχφθφθ
25 23 24 mpbir φχψτττθχφθφθ