Metamath Proof Explorer


Theorem nic-axALT

Description: A direct proof of nic-ax . (Contributed by NM, 11-Dec-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nic-axALT φ χ ψ τ τ τ θ χ φ θ φ θ

Proof

Step Hyp Ref Expression
1 simpl χ ψ χ
2 1 imim2i φ χ ψ φ χ
3 con3 φ χ ¬ χ ¬ φ
4 3 imim2d φ χ θ ¬ χ θ ¬ φ
5 2 4 syl φ χ ψ θ ¬ χ θ ¬ φ
6 anidm τ τ τ
7 6 biimpri τ τ τ
8 5 7 jctil φ χ ψ τ τ τ θ ¬ χ θ ¬ φ
9 df-nan χ ψ ¬ χ ψ
10 9 anbi2i φ χ ψ φ ¬ χ ψ
11 10 notbii ¬ φ χ ψ ¬ φ ¬ χ ψ
12 df-nan φ χ ψ ¬ φ χ ψ
13 iman φ χ ψ ¬ φ ¬ χ ψ
14 11 12 13 3bitr4i φ χ ψ φ χ ψ
15 df-nan τ τ τ θ χ φ θ φ θ ¬ τ τ τ θ χ φ θ φ θ
16 df-nan τ τ ¬ τ τ
17 16 anbi2i τ τ τ τ ¬ τ τ
18 17 notbii ¬ τ τ τ ¬ τ ¬ τ τ
19 df-nan τ τ τ ¬ τ τ τ
20 iman τ τ τ ¬ τ ¬ τ τ
21 18 19 20 3bitr4i τ τ τ τ τ τ
22 df-nan θ χ ¬ θ χ
23 imnan θ ¬ χ ¬ θ χ
24 22 23 bitr4i θ χ θ ¬ χ
25 df-nan φ θ φ θ ¬ φ θ φ θ
26 anidm φ θ φ θ φ θ
27 df-nan φ θ ¬ φ θ
28 imnan φ ¬ θ ¬ φ θ
29 con2b φ ¬ θ θ ¬ φ
30 28 29 bitr3i ¬ φ θ θ ¬ φ
31 26 27 30 3bitri φ θ φ θ θ ¬ φ
32 25 31 xchbinx φ θ φ θ ¬ θ ¬ φ
33 24 32 anbi12i θ χ φ θ φ θ θ ¬ χ ¬ θ ¬ φ
34 33 notbii ¬ θ χ φ θ φ θ ¬ θ ¬ χ ¬ θ ¬ φ
35 df-nan θ χ φ θ φ θ ¬ θ χ φ θ φ θ
36 iman θ ¬ χ θ ¬ φ ¬ θ ¬ χ ¬ θ ¬ φ
37 34 35 36 3bitr4i θ χ φ θ φ θ θ ¬ χ θ ¬ φ
38 21 37 anbi12i τ τ τ θ χ φ θ φ θ τ τ τ θ ¬ χ θ ¬ φ
39 15 38 xchbinx τ τ τ θ χ φ θ φ θ ¬ τ τ τ θ ¬ χ θ ¬ φ
40 14 39 anbi12i φ χ ψ τ τ τ θ χ φ θ φ θ φ χ ψ ¬ τ τ τ θ ¬ χ θ ¬ φ
41 40 notbii ¬ φ χ ψ τ τ τ θ χ φ θ φ θ ¬ φ χ ψ ¬ τ τ τ θ ¬ χ θ ¬ φ
42 iman φ χ ψ τ τ τ θ ¬ χ θ ¬ φ ¬ φ χ ψ ¬ τ τ τ θ ¬ χ θ ¬ φ
43 41 42 bitr4i ¬ φ χ ψ τ τ τ θ χ φ θ φ θ φ χ ψ τ τ τ θ ¬ χ θ ¬ φ
44 8 43 mpbir ¬ φ χ ψ τ τ τ θ χ φ θ φ θ
45 df-nan φ χ ψ τ τ τ θ χ φ θ φ θ ¬ φ χ ψ τ τ τ θ χ φ θ φ θ
46 44 45 mpbir φ χ ψ τ τ τ θ χ φ θ φ θ