| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝜒  ∧  𝜓 )  →  𝜒 ) | 
						
							| 2 | 1 | imim2i | ⊢ ( ( 𝜑  →  ( 𝜒  ∧  𝜓 ) )  →  ( 𝜑  →  𝜒 ) ) | 
						
							| 3 |  | con3 | ⊢ ( ( 𝜑  →  𝜒 )  →  ( ¬  𝜒  →  ¬  𝜑 ) ) | 
						
							| 4 | 3 | imim2d | ⊢ ( ( 𝜑  →  𝜒 )  →  ( ( 𝜃  →  ¬  𝜒 )  →  ( 𝜃  →  ¬  𝜑 ) ) ) | 
						
							| 5 | 2 4 | syl | ⊢ ( ( 𝜑  →  ( 𝜒  ∧  𝜓 ) )  →  ( ( 𝜃  →  ¬  𝜒 )  →  ( 𝜃  →  ¬  𝜑 ) ) ) | 
						
							| 6 |  | anidm | ⊢ ( ( 𝜏  ∧  𝜏 )  ↔  𝜏 ) | 
						
							| 7 | 6 | biimpri | ⊢ ( 𝜏  →  ( 𝜏  ∧  𝜏 ) ) | 
						
							| 8 | 5 7 | jctil | ⊢ ( ( 𝜑  →  ( 𝜒  ∧  𝜓 ) )  →  ( ( 𝜏  →  ( 𝜏  ∧  𝜏 ) )  ∧  ( ( 𝜃  →  ¬  𝜒 )  →  ( 𝜃  →  ¬  𝜑 ) ) ) ) | 
						
							| 9 |  | df-nan | ⊢ ( ( 𝜒  ⊼  𝜓 )  ↔  ¬  ( 𝜒  ∧  𝜓 ) ) | 
						
							| 10 | 9 | anbi2i | ⊢ ( ( 𝜑  ∧  ( 𝜒  ⊼  𝜓 ) )  ↔  ( 𝜑  ∧  ¬  ( 𝜒  ∧  𝜓 ) ) ) | 
						
							| 11 | 10 | notbii | ⊢ ( ¬  ( 𝜑  ∧  ( 𝜒  ⊼  𝜓 ) )  ↔  ¬  ( 𝜑  ∧  ¬  ( 𝜒  ∧  𝜓 ) ) ) | 
						
							| 12 |  | df-nan | ⊢ ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜓 ) )  ↔  ¬  ( 𝜑  ∧  ( 𝜒  ⊼  𝜓 ) ) ) | 
						
							| 13 |  | iman | ⊢ ( ( 𝜑  →  ( 𝜒  ∧  𝜓 ) )  ↔  ¬  ( 𝜑  ∧  ¬  ( 𝜒  ∧  𝜓 ) ) ) | 
						
							| 14 | 11 12 13 | 3bitr4i | ⊢ ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜓 ) )  ↔  ( 𝜑  →  ( 𝜒  ∧  𝜓 ) ) ) | 
						
							| 15 |  | df-nan | ⊢ ( ( ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) )  ⊼  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) )  ↔  ¬  ( ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) )  ∧  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) ) | 
						
							| 16 |  | df-nan | ⊢ ( ( 𝜏  ⊼  𝜏 )  ↔  ¬  ( 𝜏  ∧  𝜏 ) ) | 
						
							| 17 | 16 | anbi2i | ⊢ ( ( 𝜏  ∧  ( 𝜏  ⊼  𝜏 ) )  ↔  ( 𝜏  ∧  ¬  ( 𝜏  ∧  𝜏 ) ) ) | 
						
							| 18 | 17 | notbii | ⊢ ( ¬  ( 𝜏  ∧  ( 𝜏  ⊼  𝜏 ) )  ↔  ¬  ( 𝜏  ∧  ¬  ( 𝜏  ∧  𝜏 ) ) ) | 
						
							| 19 |  | df-nan | ⊢ ( ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) )  ↔  ¬  ( 𝜏  ∧  ( 𝜏  ⊼  𝜏 ) ) ) | 
						
							| 20 |  | iman | ⊢ ( ( 𝜏  →  ( 𝜏  ∧  𝜏 ) )  ↔  ¬  ( 𝜏  ∧  ¬  ( 𝜏  ∧  𝜏 ) ) ) | 
						
							| 21 | 18 19 20 | 3bitr4i | ⊢ ( ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) )  ↔  ( 𝜏  →  ( 𝜏  ∧  𝜏 ) ) ) | 
						
							| 22 |  | df-nan | ⊢ ( ( 𝜃  ⊼  𝜒 )  ↔  ¬  ( 𝜃  ∧  𝜒 ) ) | 
						
							| 23 |  | imnan | ⊢ ( ( 𝜃  →  ¬  𝜒 )  ↔  ¬  ( 𝜃  ∧  𝜒 ) ) | 
						
							| 24 | 22 23 | bitr4i | ⊢ ( ( 𝜃  ⊼  𝜒 )  ↔  ( 𝜃  →  ¬  𝜒 ) ) | 
						
							| 25 |  | df-nan | ⊢ ( ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) )  ↔  ¬  ( ( 𝜑  ⊼  𝜃 )  ∧  ( 𝜑  ⊼  𝜃 ) ) ) | 
						
							| 26 |  | anidm | ⊢ ( ( ( 𝜑  ⊼  𝜃 )  ∧  ( 𝜑  ⊼  𝜃 ) )  ↔  ( 𝜑  ⊼  𝜃 ) ) | 
						
							| 27 |  | df-nan | ⊢ ( ( 𝜑  ⊼  𝜃 )  ↔  ¬  ( 𝜑  ∧  𝜃 ) ) | 
						
							| 28 |  | imnan | ⊢ ( ( 𝜑  →  ¬  𝜃 )  ↔  ¬  ( 𝜑  ∧  𝜃 ) ) | 
						
							| 29 |  | con2b | ⊢ ( ( 𝜑  →  ¬  𝜃 )  ↔  ( 𝜃  →  ¬  𝜑 ) ) | 
						
							| 30 | 28 29 | bitr3i | ⊢ ( ¬  ( 𝜑  ∧  𝜃 )  ↔  ( 𝜃  →  ¬  𝜑 ) ) | 
						
							| 31 | 26 27 30 | 3bitri | ⊢ ( ( ( 𝜑  ⊼  𝜃 )  ∧  ( 𝜑  ⊼  𝜃 ) )  ↔  ( 𝜃  →  ¬  𝜑 ) ) | 
						
							| 32 | 25 31 | xchbinx | ⊢ ( ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) )  ↔  ¬  ( 𝜃  →  ¬  𝜑 ) ) | 
						
							| 33 | 24 32 | anbi12i | ⊢ ( ( ( 𝜃  ⊼  𝜒 )  ∧  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) )  ↔  ( ( 𝜃  →  ¬  𝜒 )  ∧  ¬  ( 𝜃  →  ¬  𝜑 ) ) ) | 
						
							| 34 | 33 | notbii | ⊢ ( ¬  ( ( 𝜃  ⊼  𝜒 )  ∧  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) )  ↔  ¬  ( ( 𝜃  →  ¬  𝜒 )  ∧  ¬  ( 𝜃  →  ¬  𝜑 ) ) ) | 
						
							| 35 |  | df-nan | ⊢ ( ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) )  ↔  ¬  ( ( 𝜃  ⊼  𝜒 )  ∧  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) | 
						
							| 36 |  | iman | ⊢ ( ( ( 𝜃  →  ¬  𝜒 )  →  ( 𝜃  →  ¬  𝜑 ) )  ↔  ¬  ( ( 𝜃  →  ¬  𝜒 )  ∧  ¬  ( 𝜃  →  ¬  𝜑 ) ) ) | 
						
							| 37 | 34 35 36 | 3bitr4i | ⊢ ( ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) )  ↔  ( ( 𝜃  →  ¬  𝜒 )  →  ( 𝜃  →  ¬  𝜑 ) ) ) | 
						
							| 38 | 21 37 | anbi12i | ⊢ ( ( ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) )  ∧  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) )  ↔  ( ( 𝜏  →  ( 𝜏  ∧  𝜏 ) )  ∧  ( ( 𝜃  →  ¬  𝜒 )  →  ( 𝜃  →  ¬  𝜑 ) ) ) ) | 
						
							| 39 | 15 38 | xchbinx | ⊢ ( ( ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) )  ⊼  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) )  ↔  ¬  ( ( 𝜏  →  ( 𝜏  ∧  𝜏 ) )  ∧  ( ( 𝜃  →  ¬  𝜒 )  →  ( 𝜃  →  ¬  𝜑 ) ) ) ) | 
						
							| 40 | 14 39 | anbi12i | ⊢ ( ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜓 ) )  ∧  ( ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) )  ⊼  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) )  ↔  ( ( 𝜑  →  ( 𝜒  ∧  𝜓 ) )  ∧  ¬  ( ( 𝜏  →  ( 𝜏  ∧  𝜏 ) )  ∧  ( ( 𝜃  →  ¬  𝜒 )  →  ( 𝜃  →  ¬  𝜑 ) ) ) ) ) | 
						
							| 41 | 40 | notbii | ⊢ ( ¬  ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜓 ) )  ∧  ( ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) )  ⊼  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) )  ↔  ¬  ( ( 𝜑  →  ( 𝜒  ∧  𝜓 ) )  ∧  ¬  ( ( 𝜏  →  ( 𝜏  ∧  𝜏 ) )  ∧  ( ( 𝜃  →  ¬  𝜒 )  →  ( 𝜃  →  ¬  𝜑 ) ) ) ) ) | 
						
							| 42 |  | iman | ⊢ ( ( ( 𝜑  →  ( 𝜒  ∧  𝜓 ) )  →  ( ( 𝜏  →  ( 𝜏  ∧  𝜏 ) )  ∧  ( ( 𝜃  →  ¬  𝜒 )  →  ( 𝜃  →  ¬  𝜑 ) ) ) )  ↔  ¬  ( ( 𝜑  →  ( 𝜒  ∧  𝜓 ) )  ∧  ¬  ( ( 𝜏  →  ( 𝜏  ∧  𝜏 ) )  ∧  ( ( 𝜃  →  ¬  𝜒 )  →  ( 𝜃  →  ¬  𝜑 ) ) ) ) ) | 
						
							| 43 | 41 42 | bitr4i | ⊢ ( ¬  ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜓 ) )  ∧  ( ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) )  ⊼  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) )  ↔  ( ( 𝜑  →  ( 𝜒  ∧  𝜓 ) )  →  ( ( 𝜏  →  ( 𝜏  ∧  𝜏 ) )  ∧  ( ( 𝜃  →  ¬  𝜒 )  →  ( 𝜃  →  ¬  𝜑 ) ) ) ) ) | 
						
							| 44 | 8 43 | mpbir | ⊢ ¬  ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜓 ) )  ∧  ( ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) )  ⊼  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) ) | 
						
							| 45 |  | df-nan | ⊢ ( ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜓 ) )  ⊼  ( ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) )  ⊼  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) )  ↔  ¬  ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜓 ) )  ∧  ( ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) )  ⊼  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) ) ) | 
						
							| 46 | 44 45 | mpbir | ⊢ ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜓 ) )  ⊼  ( ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) )  ⊼  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) ) |