Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝜒 ∧ 𝜓 ) → 𝜒 ) |
2 |
1
|
imim2i |
⊢ ( ( 𝜑 → ( 𝜒 ∧ 𝜓 ) ) → ( 𝜑 → 𝜒 ) ) |
3 |
|
con3 |
⊢ ( ( 𝜑 → 𝜒 ) → ( ¬ 𝜒 → ¬ 𝜑 ) ) |
4 |
3
|
imim2d |
⊢ ( ( 𝜑 → 𝜒 ) → ( ( 𝜃 → ¬ 𝜒 ) → ( 𝜃 → ¬ 𝜑 ) ) ) |
5 |
2 4
|
syl |
⊢ ( ( 𝜑 → ( 𝜒 ∧ 𝜓 ) ) → ( ( 𝜃 → ¬ 𝜒 ) → ( 𝜃 → ¬ 𝜑 ) ) ) |
6 |
|
anidm |
⊢ ( ( 𝜏 ∧ 𝜏 ) ↔ 𝜏 ) |
7 |
6
|
biimpri |
⊢ ( 𝜏 → ( 𝜏 ∧ 𝜏 ) ) |
8 |
5 7
|
jctil |
⊢ ( ( 𝜑 → ( 𝜒 ∧ 𝜓 ) ) → ( ( 𝜏 → ( 𝜏 ∧ 𝜏 ) ) ∧ ( ( 𝜃 → ¬ 𝜒 ) → ( 𝜃 → ¬ 𝜑 ) ) ) ) |
9 |
|
df-nan |
⊢ ( ( 𝜒 ⊼ 𝜓 ) ↔ ¬ ( 𝜒 ∧ 𝜓 ) ) |
10 |
9
|
anbi2i |
⊢ ( ( 𝜑 ∧ ( 𝜒 ⊼ 𝜓 ) ) ↔ ( 𝜑 ∧ ¬ ( 𝜒 ∧ 𝜓 ) ) ) |
11 |
10
|
notbii |
⊢ ( ¬ ( 𝜑 ∧ ( 𝜒 ⊼ 𝜓 ) ) ↔ ¬ ( 𝜑 ∧ ¬ ( 𝜒 ∧ 𝜓 ) ) ) |
12 |
|
df-nan |
⊢ ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) ↔ ¬ ( 𝜑 ∧ ( 𝜒 ⊼ 𝜓 ) ) ) |
13 |
|
iman |
⊢ ( ( 𝜑 → ( 𝜒 ∧ 𝜓 ) ) ↔ ¬ ( 𝜑 ∧ ¬ ( 𝜒 ∧ 𝜓 ) ) ) |
14 |
11 12 13
|
3bitr4i |
⊢ ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) ↔ ( 𝜑 → ( 𝜒 ∧ 𝜓 ) ) ) |
15 |
|
df-nan |
⊢ ( ( ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ⊼ ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) ↔ ¬ ( ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ∧ ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) ) |
16 |
|
df-nan |
⊢ ( ( 𝜏 ⊼ 𝜏 ) ↔ ¬ ( 𝜏 ∧ 𝜏 ) ) |
17 |
16
|
anbi2i |
⊢ ( ( 𝜏 ∧ ( 𝜏 ⊼ 𝜏 ) ) ↔ ( 𝜏 ∧ ¬ ( 𝜏 ∧ 𝜏 ) ) ) |
18 |
17
|
notbii |
⊢ ( ¬ ( 𝜏 ∧ ( 𝜏 ⊼ 𝜏 ) ) ↔ ¬ ( 𝜏 ∧ ¬ ( 𝜏 ∧ 𝜏 ) ) ) |
19 |
|
df-nan |
⊢ ( ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ↔ ¬ ( 𝜏 ∧ ( 𝜏 ⊼ 𝜏 ) ) ) |
20 |
|
iman |
⊢ ( ( 𝜏 → ( 𝜏 ∧ 𝜏 ) ) ↔ ¬ ( 𝜏 ∧ ¬ ( 𝜏 ∧ 𝜏 ) ) ) |
21 |
18 19 20
|
3bitr4i |
⊢ ( ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ↔ ( 𝜏 → ( 𝜏 ∧ 𝜏 ) ) ) |
22 |
|
df-nan |
⊢ ( ( 𝜃 ⊼ 𝜒 ) ↔ ¬ ( 𝜃 ∧ 𝜒 ) ) |
23 |
|
imnan |
⊢ ( ( 𝜃 → ¬ 𝜒 ) ↔ ¬ ( 𝜃 ∧ 𝜒 ) ) |
24 |
22 23
|
bitr4i |
⊢ ( ( 𝜃 ⊼ 𝜒 ) ↔ ( 𝜃 → ¬ 𝜒 ) ) |
25 |
|
df-nan |
⊢ ( ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ↔ ¬ ( ( 𝜑 ⊼ 𝜃 ) ∧ ( 𝜑 ⊼ 𝜃 ) ) ) |
26 |
|
anidm |
⊢ ( ( ( 𝜑 ⊼ 𝜃 ) ∧ ( 𝜑 ⊼ 𝜃 ) ) ↔ ( 𝜑 ⊼ 𝜃 ) ) |
27 |
|
df-nan |
⊢ ( ( 𝜑 ⊼ 𝜃 ) ↔ ¬ ( 𝜑 ∧ 𝜃 ) ) |
28 |
|
imnan |
⊢ ( ( 𝜑 → ¬ 𝜃 ) ↔ ¬ ( 𝜑 ∧ 𝜃 ) ) |
29 |
|
con2b |
⊢ ( ( 𝜑 → ¬ 𝜃 ) ↔ ( 𝜃 → ¬ 𝜑 ) ) |
30 |
28 29
|
bitr3i |
⊢ ( ¬ ( 𝜑 ∧ 𝜃 ) ↔ ( 𝜃 → ¬ 𝜑 ) ) |
31 |
26 27 30
|
3bitri |
⊢ ( ( ( 𝜑 ⊼ 𝜃 ) ∧ ( 𝜑 ⊼ 𝜃 ) ) ↔ ( 𝜃 → ¬ 𝜑 ) ) |
32 |
25 31
|
xchbinx |
⊢ ( ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ↔ ¬ ( 𝜃 → ¬ 𝜑 ) ) |
33 |
24 32
|
anbi12i |
⊢ ( ( ( 𝜃 ⊼ 𝜒 ) ∧ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ↔ ( ( 𝜃 → ¬ 𝜒 ) ∧ ¬ ( 𝜃 → ¬ 𝜑 ) ) ) |
34 |
33
|
notbii |
⊢ ( ¬ ( ( 𝜃 ⊼ 𝜒 ) ∧ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ↔ ¬ ( ( 𝜃 → ¬ 𝜒 ) ∧ ¬ ( 𝜃 → ¬ 𝜑 ) ) ) |
35 |
|
df-nan |
⊢ ( ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ↔ ¬ ( ( 𝜃 ⊼ 𝜒 ) ∧ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) |
36 |
|
iman |
⊢ ( ( ( 𝜃 → ¬ 𝜒 ) → ( 𝜃 → ¬ 𝜑 ) ) ↔ ¬ ( ( 𝜃 → ¬ 𝜒 ) ∧ ¬ ( 𝜃 → ¬ 𝜑 ) ) ) |
37 |
34 35 36
|
3bitr4i |
⊢ ( ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ↔ ( ( 𝜃 → ¬ 𝜒 ) → ( 𝜃 → ¬ 𝜑 ) ) ) |
38 |
21 37
|
anbi12i |
⊢ ( ( ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ∧ ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) ↔ ( ( 𝜏 → ( 𝜏 ∧ 𝜏 ) ) ∧ ( ( 𝜃 → ¬ 𝜒 ) → ( 𝜃 → ¬ 𝜑 ) ) ) ) |
39 |
15 38
|
xchbinx |
⊢ ( ( ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ⊼ ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) ↔ ¬ ( ( 𝜏 → ( 𝜏 ∧ 𝜏 ) ) ∧ ( ( 𝜃 → ¬ 𝜒 ) → ( 𝜃 → ¬ 𝜑 ) ) ) ) |
40 |
14 39
|
anbi12i |
⊢ ( ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) ∧ ( ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ⊼ ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) ) ↔ ( ( 𝜑 → ( 𝜒 ∧ 𝜓 ) ) ∧ ¬ ( ( 𝜏 → ( 𝜏 ∧ 𝜏 ) ) ∧ ( ( 𝜃 → ¬ 𝜒 ) → ( 𝜃 → ¬ 𝜑 ) ) ) ) ) |
41 |
40
|
notbii |
⊢ ( ¬ ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) ∧ ( ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ⊼ ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) ) ↔ ¬ ( ( 𝜑 → ( 𝜒 ∧ 𝜓 ) ) ∧ ¬ ( ( 𝜏 → ( 𝜏 ∧ 𝜏 ) ) ∧ ( ( 𝜃 → ¬ 𝜒 ) → ( 𝜃 → ¬ 𝜑 ) ) ) ) ) |
42 |
|
iman |
⊢ ( ( ( 𝜑 → ( 𝜒 ∧ 𝜓 ) ) → ( ( 𝜏 → ( 𝜏 ∧ 𝜏 ) ) ∧ ( ( 𝜃 → ¬ 𝜒 ) → ( 𝜃 → ¬ 𝜑 ) ) ) ) ↔ ¬ ( ( 𝜑 → ( 𝜒 ∧ 𝜓 ) ) ∧ ¬ ( ( 𝜏 → ( 𝜏 ∧ 𝜏 ) ) ∧ ( ( 𝜃 → ¬ 𝜒 ) → ( 𝜃 → ¬ 𝜑 ) ) ) ) ) |
43 |
41 42
|
bitr4i |
⊢ ( ¬ ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) ∧ ( ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ⊼ ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) ) ↔ ( ( 𝜑 → ( 𝜒 ∧ 𝜓 ) ) → ( ( 𝜏 → ( 𝜏 ∧ 𝜏 ) ) ∧ ( ( 𝜃 → ¬ 𝜒 ) → ( 𝜃 → ¬ 𝜑 ) ) ) ) ) |
44 |
8 43
|
mpbir |
⊢ ¬ ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) ∧ ( ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ⊼ ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) ) |
45 |
|
df-nan |
⊢ ( ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) ⊼ ( ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ⊼ ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) ) ↔ ¬ ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) ∧ ( ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ⊼ ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) ) ) |
46 |
44 45
|
mpbir |
⊢ ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) ⊼ ( ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ⊼ ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) ) |