| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nannan | ⊢ ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜓 ) )  ↔  ( 𝜑  →  ( 𝜒  ∧  𝜓 ) ) ) | 
						
							| 2 | 1 | biimpi | ⊢ ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜓 ) )  →  ( 𝜑  →  ( 𝜒  ∧  𝜓 ) ) ) | 
						
							| 3 |  | simpl | ⊢ ( ( 𝜒  ∧  𝜓 )  →  𝜒 ) | 
						
							| 4 | 3 | imim2i | ⊢ ( ( 𝜑  →  ( 𝜒  ∧  𝜓 ) )  →  ( 𝜑  →  𝜒 ) ) | 
						
							| 5 |  | imnan | ⊢ ( ( 𝜃  →  ¬  𝜒 )  ↔  ¬  ( 𝜃  ∧  𝜒 ) ) | 
						
							| 6 |  | df-nan | ⊢ ( ( 𝜃  ⊼  𝜒 )  ↔  ¬  ( 𝜃  ∧  𝜒 ) ) | 
						
							| 7 | 5 6 | bitr4i | ⊢ ( ( 𝜃  →  ¬  𝜒 )  ↔  ( 𝜃  ⊼  𝜒 ) ) | 
						
							| 8 |  | con3 | ⊢ ( ( 𝜑  →  𝜒 )  →  ( ¬  𝜒  →  ¬  𝜑 ) ) | 
						
							| 9 | 8 | imim2d | ⊢ ( ( 𝜑  →  𝜒 )  →  ( ( 𝜃  →  ¬  𝜒 )  →  ( 𝜃  →  ¬  𝜑 ) ) ) | 
						
							| 10 |  | imnan | ⊢ ( ( 𝜑  →  ¬  𝜃 )  ↔  ¬  ( 𝜑  ∧  𝜃 ) ) | 
						
							| 11 |  | con2b | ⊢ ( ( 𝜃  →  ¬  𝜑 )  ↔  ( 𝜑  →  ¬  𝜃 ) ) | 
						
							| 12 |  | df-nan | ⊢ ( ( 𝜑  ⊼  𝜃 )  ↔  ¬  ( 𝜑  ∧  𝜃 ) ) | 
						
							| 13 | 10 11 12 | 3bitr4ri | ⊢ ( ( 𝜑  ⊼  𝜃 )  ↔  ( 𝜃  →  ¬  𝜑 ) ) | 
						
							| 14 | 9 13 | imbitrrdi | ⊢ ( ( 𝜑  →  𝜒 )  →  ( ( 𝜃  →  ¬  𝜒 )  →  ( 𝜑  ⊼  𝜃 ) ) ) | 
						
							| 15 | 7 14 | biimtrrid | ⊢ ( ( 𝜑  →  𝜒 )  →  ( ( 𝜃  ⊼  𝜒 )  →  ( 𝜑  ⊼  𝜃 ) ) ) | 
						
							| 16 |  | nanim | ⊢ ( ( ( 𝜃  ⊼  𝜒 )  →  ( 𝜑  ⊼  𝜃 ) )  ↔  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) | 
						
							| 17 | 15 16 | sylib | ⊢ ( ( 𝜑  →  𝜒 )  →  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) | 
						
							| 18 | 2 4 17 | 3syl | ⊢ ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜓 ) )  →  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) | 
						
							| 19 |  | pm4.24 | ⊢ ( 𝜏  ↔  ( 𝜏  ∧  𝜏 ) ) | 
						
							| 20 | 19 | biimpi | ⊢ ( 𝜏  →  ( 𝜏  ∧  𝜏 ) ) | 
						
							| 21 |  | nannan | ⊢ ( ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) )  ↔  ( 𝜏  →  ( 𝜏  ∧  𝜏 ) ) ) | 
						
							| 22 | 20 21 | mpbir | ⊢ ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) ) | 
						
							| 23 | 18 22 | jctil | ⊢ ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜓 ) )  →  ( ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) )  ∧  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) ) | 
						
							| 24 |  | nannan | ⊢ ( ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜓 ) )  ⊼  ( ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) )  ⊼  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) )  ↔  ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜓 ) )  →  ( ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) )  ∧  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) ) ) | 
						
							| 25 | 23 24 | mpbir | ⊢ ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜓 ) )  ⊼  ( ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) )  ⊼  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) ) |