Step |
Hyp |
Ref |
Expression |
1 |
|
nannan |
⊢ ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) ↔ ( 𝜑 → ( 𝜒 ∧ 𝜓 ) ) ) |
2 |
1
|
biimpi |
⊢ ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) → ( 𝜑 → ( 𝜒 ∧ 𝜓 ) ) ) |
3 |
|
simpl |
⊢ ( ( 𝜒 ∧ 𝜓 ) → 𝜒 ) |
4 |
3
|
imim2i |
⊢ ( ( 𝜑 → ( 𝜒 ∧ 𝜓 ) ) → ( 𝜑 → 𝜒 ) ) |
5 |
|
imnan |
⊢ ( ( 𝜃 → ¬ 𝜒 ) ↔ ¬ ( 𝜃 ∧ 𝜒 ) ) |
6 |
|
df-nan |
⊢ ( ( 𝜃 ⊼ 𝜒 ) ↔ ¬ ( 𝜃 ∧ 𝜒 ) ) |
7 |
5 6
|
bitr4i |
⊢ ( ( 𝜃 → ¬ 𝜒 ) ↔ ( 𝜃 ⊼ 𝜒 ) ) |
8 |
|
con3 |
⊢ ( ( 𝜑 → 𝜒 ) → ( ¬ 𝜒 → ¬ 𝜑 ) ) |
9 |
8
|
imim2d |
⊢ ( ( 𝜑 → 𝜒 ) → ( ( 𝜃 → ¬ 𝜒 ) → ( 𝜃 → ¬ 𝜑 ) ) ) |
10 |
|
imnan |
⊢ ( ( 𝜑 → ¬ 𝜃 ) ↔ ¬ ( 𝜑 ∧ 𝜃 ) ) |
11 |
|
con2b |
⊢ ( ( 𝜃 → ¬ 𝜑 ) ↔ ( 𝜑 → ¬ 𝜃 ) ) |
12 |
|
df-nan |
⊢ ( ( 𝜑 ⊼ 𝜃 ) ↔ ¬ ( 𝜑 ∧ 𝜃 ) ) |
13 |
10 11 12
|
3bitr4ri |
⊢ ( ( 𝜑 ⊼ 𝜃 ) ↔ ( 𝜃 → ¬ 𝜑 ) ) |
14 |
9 13
|
syl6ibr |
⊢ ( ( 𝜑 → 𝜒 ) → ( ( 𝜃 → ¬ 𝜒 ) → ( 𝜑 ⊼ 𝜃 ) ) ) |
15 |
7 14
|
syl5bir |
⊢ ( ( 𝜑 → 𝜒 ) → ( ( 𝜃 ⊼ 𝜒 ) → ( 𝜑 ⊼ 𝜃 ) ) ) |
16 |
|
nanim |
⊢ ( ( ( 𝜃 ⊼ 𝜒 ) → ( 𝜑 ⊼ 𝜃 ) ) ↔ ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) |
17 |
15 16
|
sylib |
⊢ ( ( 𝜑 → 𝜒 ) → ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) |
18 |
2 4 17
|
3syl |
⊢ ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) → ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) |
19 |
|
pm4.24 |
⊢ ( 𝜏 ↔ ( 𝜏 ∧ 𝜏 ) ) |
20 |
19
|
biimpi |
⊢ ( 𝜏 → ( 𝜏 ∧ 𝜏 ) ) |
21 |
|
nannan |
⊢ ( ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ↔ ( 𝜏 → ( 𝜏 ∧ 𝜏 ) ) ) |
22 |
20 21
|
mpbir |
⊢ ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) |
23 |
18 22
|
jctil |
⊢ ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) → ( ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ∧ ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) ) |
24 |
|
nannan |
⊢ ( ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) ⊼ ( ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ⊼ ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) ) ↔ ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) → ( ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ∧ ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) ) ) |
25 |
23 24
|
mpbir |
⊢ ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) ⊼ ( ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ⊼ ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) ) |