Metamath Proof Explorer


Theorem nic-ax

Description: Nicod's axiom derived from the standard ones. SeeIntroduction to Mathematical Philosophy by B. Russell, p. 152. Like meredith , the usual axioms can be derived from this and vice versa. Unlike meredith , Nicod uses a different connective ('nand'), so another form of modus ponens must be used in proofs, e.g., { nic-ax , nic-mp } is equivalent to { luk-1 , luk-2 , luk-3 , ax-mp } . In a pure (standalone) treatment of Nicod's axiom, this theorem would be changed to an axiom ($a statement). (Contributed by Jeff Hoffman, 19-Nov-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nic-ax ( ( 𝜑 ⊼ ( 𝜒𝜓 ) ) ⊼ ( ( 𝜏 ⊼ ( 𝜏𝜏 ) ) ⊼ ( ( 𝜃𝜒 ) ⊼ ( ( 𝜑𝜃 ) ⊼ ( 𝜑𝜃 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 nannan ( ( 𝜑 ⊼ ( 𝜒𝜓 ) ) ↔ ( 𝜑 → ( 𝜒𝜓 ) ) )
2 1 biimpi ( ( 𝜑 ⊼ ( 𝜒𝜓 ) ) → ( 𝜑 → ( 𝜒𝜓 ) ) )
3 simpl ( ( 𝜒𝜓 ) → 𝜒 )
4 3 imim2i ( ( 𝜑 → ( 𝜒𝜓 ) ) → ( 𝜑𝜒 ) )
5 imnan ( ( 𝜃 → ¬ 𝜒 ) ↔ ¬ ( 𝜃𝜒 ) )
6 df-nan ( ( 𝜃𝜒 ) ↔ ¬ ( 𝜃𝜒 ) )
7 5 6 bitr4i ( ( 𝜃 → ¬ 𝜒 ) ↔ ( 𝜃𝜒 ) )
8 con3 ( ( 𝜑𝜒 ) → ( ¬ 𝜒 → ¬ 𝜑 ) )
9 8 imim2d ( ( 𝜑𝜒 ) → ( ( 𝜃 → ¬ 𝜒 ) → ( 𝜃 → ¬ 𝜑 ) ) )
10 imnan ( ( 𝜑 → ¬ 𝜃 ) ↔ ¬ ( 𝜑𝜃 ) )
11 con2b ( ( 𝜃 → ¬ 𝜑 ) ↔ ( 𝜑 → ¬ 𝜃 ) )
12 df-nan ( ( 𝜑𝜃 ) ↔ ¬ ( 𝜑𝜃 ) )
13 10 11 12 3bitr4ri ( ( 𝜑𝜃 ) ↔ ( 𝜃 → ¬ 𝜑 ) )
14 9 13 syl6ibr ( ( 𝜑𝜒 ) → ( ( 𝜃 → ¬ 𝜒 ) → ( 𝜑𝜃 ) ) )
15 7 14 syl5bir ( ( 𝜑𝜒 ) → ( ( 𝜃𝜒 ) → ( 𝜑𝜃 ) ) )
16 nanim ( ( ( 𝜃𝜒 ) → ( 𝜑𝜃 ) ) ↔ ( ( 𝜃𝜒 ) ⊼ ( ( 𝜑𝜃 ) ⊼ ( 𝜑𝜃 ) ) ) )
17 15 16 sylib ( ( 𝜑𝜒 ) → ( ( 𝜃𝜒 ) ⊼ ( ( 𝜑𝜃 ) ⊼ ( 𝜑𝜃 ) ) ) )
18 2 4 17 3syl ( ( 𝜑 ⊼ ( 𝜒𝜓 ) ) → ( ( 𝜃𝜒 ) ⊼ ( ( 𝜑𝜃 ) ⊼ ( 𝜑𝜃 ) ) ) )
19 pm4.24 ( 𝜏 ↔ ( 𝜏𝜏 ) )
20 19 biimpi ( 𝜏 → ( 𝜏𝜏 ) )
21 nannan ( ( 𝜏 ⊼ ( 𝜏𝜏 ) ) ↔ ( 𝜏 → ( 𝜏𝜏 ) ) )
22 20 21 mpbir ( 𝜏 ⊼ ( 𝜏𝜏 ) )
23 18 22 jctil ( ( 𝜑 ⊼ ( 𝜒𝜓 ) ) → ( ( 𝜏 ⊼ ( 𝜏𝜏 ) ) ∧ ( ( 𝜃𝜒 ) ⊼ ( ( 𝜑𝜃 ) ⊼ ( 𝜑𝜃 ) ) ) ) )
24 nannan ( ( ( 𝜑 ⊼ ( 𝜒𝜓 ) ) ⊼ ( ( 𝜏 ⊼ ( 𝜏𝜏 ) ) ⊼ ( ( 𝜃𝜒 ) ⊼ ( ( 𝜑𝜃 ) ⊼ ( 𝜑𝜃 ) ) ) ) ) ↔ ( ( 𝜑 ⊼ ( 𝜒𝜓 ) ) → ( ( 𝜏 ⊼ ( 𝜏𝜏 ) ) ∧ ( ( 𝜃𝜒 ) ⊼ ( ( 𝜑𝜃 ) ⊼ ( 𝜑𝜃 ) ) ) ) ) )
25 23 24 mpbir ( ( 𝜑 ⊼ ( 𝜒𝜓 ) ) ⊼ ( ( 𝜏 ⊼ ( 𝜏𝜏 ) ) ⊼ ( ( 𝜃𝜒 ) ⊼ ( ( 𝜑𝜃 ) ⊼ ( 𝜑𝜃 ) ) ) ) )