| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nannan |  |-  ( ( ph -/\ ( ch -/\ ps ) ) <-> ( ph -> ( ch /\ ps ) ) ) | 
						
							| 2 | 1 | biimpi |  |-  ( ( ph -/\ ( ch -/\ ps ) ) -> ( ph -> ( ch /\ ps ) ) ) | 
						
							| 3 |  | simpl |  |-  ( ( ch /\ ps ) -> ch ) | 
						
							| 4 | 3 | imim2i |  |-  ( ( ph -> ( ch /\ ps ) ) -> ( ph -> ch ) ) | 
						
							| 5 |  | imnan |  |-  ( ( th -> -. ch ) <-> -. ( th /\ ch ) ) | 
						
							| 6 |  | df-nan |  |-  ( ( th -/\ ch ) <-> -. ( th /\ ch ) ) | 
						
							| 7 | 5 6 | bitr4i |  |-  ( ( th -> -. ch ) <-> ( th -/\ ch ) ) | 
						
							| 8 |  | con3 |  |-  ( ( ph -> ch ) -> ( -. ch -> -. ph ) ) | 
						
							| 9 | 8 | imim2d |  |-  ( ( ph -> ch ) -> ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) | 
						
							| 10 |  | imnan |  |-  ( ( ph -> -. th ) <-> -. ( ph /\ th ) ) | 
						
							| 11 |  | con2b |  |-  ( ( th -> -. ph ) <-> ( ph -> -. th ) ) | 
						
							| 12 |  | df-nan |  |-  ( ( ph -/\ th ) <-> -. ( ph /\ th ) ) | 
						
							| 13 | 10 11 12 | 3bitr4ri |  |-  ( ( ph -/\ th ) <-> ( th -> -. ph ) ) | 
						
							| 14 | 9 13 | imbitrrdi |  |-  ( ( ph -> ch ) -> ( ( th -> -. ch ) -> ( ph -/\ th ) ) ) | 
						
							| 15 | 7 14 | biimtrrid |  |-  ( ( ph -> ch ) -> ( ( th -/\ ch ) -> ( ph -/\ th ) ) ) | 
						
							| 16 |  | nanim |  |-  ( ( ( th -/\ ch ) -> ( ph -/\ th ) ) <-> ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) | 
						
							| 17 | 15 16 | sylib |  |-  ( ( ph -> ch ) -> ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) | 
						
							| 18 | 2 4 17 | 3syl |  |-  ( ( ph -/\ ( ch -/\ ps ) ) -> ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) | 
						
							| 19 |  | pm4.24 |  |-  ( ta <-> ( ta /\ ta ) ) | 
						
							| 20 | 19 | biimpi |  |-  ( ta -> ( ta /\ ta ) ) | 
						
							| 21 |  | nannan |  |-  ( ( ta -/\ ( ta -/\ ta ) ) <-> ( ta -> ( ta /\ ta ) ) ) | 
						
							| 22 | 20 21 | mpbir |  |-  ( ta -/\ ( ta -/\ ta ) ) | 
						
							| 23 | 18 22 | jctil |  |-  ( ( ph -/\ ( ch -/\ ps ) ) -> ( ( ta -/\ ( ta -/\ ta ) ) /\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) | 
						
							| 24 |  | nannan |  |-  ( ( ( ph -/\ ( ch -/\ ps ) ) -/\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) <-> ( ( ph -/\ ( ch -/\ ps ) ) -> ( ( ta -/\ ( ta -/\ ta ) ) /\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) ) | 
						
							| 25 | 23 24 | mpbir |  |-  ( ( ph -/\ ( ch -/\ ps ) ) -/\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) |