Step |
Hyp |
Ref |
Expression |
1 |
|
nannan |
|- ( ( ph -/\ ( ch -/\ ps ) ) <-> ( ph -> ( ch /\ ps ) ) ) |
2 |
1
|
biimpi |
|- ( ( ph -/\ ( ch -/\ ps ) ) -> ( ph -> ( ch /\ ps ) ) ) |
3 |
|
simpl |
|- ( ( ch /\ ps ) -> ch ) |
4 |
3
|
imim2i |
|- ( ( ph -> ( ch /\ ps ) ) -> ( ph -> ch ) ) |
5 |
|
imnan |
|- ( ( th -> -. ch ) <-> -. ( th /\ ch ) ) |
6 |
|
df-nan |
|- ( ( th -/\ ch ) <-> -. ( th /\ ch ) ) |
7 |
5 6
|
bitr4i |
|- ( ( th -> -. ch ) <-> ( th -/\ ch ) ) |
8 |
|
con3 |
|- ( ( ph -> ch ) -> ( -. ch -> -. ph ) ) |
9 |
8
|
imim2d |
|- ( ( ph -> ch ) -> ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) |
10 |
|
imnan |
|- ( ( ph -> -. th ) <-> -. ( ph /\ th ) ) |
11 |
|
con2b |
|- ( ( th -> -. ph ) <-> ( ph -> -. th ) ) |
12 |
|
df-nan |
|- ( ( ph -/\ th ) <-> -. ( ph /\ th ) ) |
13 |
10 11 12
|
3bitr4ri |
|- ( ( ph -/\ th ) <-> ( th -> -. ph ) ) |
14 |
9 13
|
syl6ibr |
|- ( ( ph -> ch ) -> ( ( th -> -. ch ) -> ( ph -/\ th ) ) ) |
15 |
7 14
|
syl5bir |
|- ( ( ph -> ch ) -> ( ( th -/\ ch ) -> ( ph -/\ th ) ) ) |
16 |
|
nanim |
|- ( ( ( th -/\ ch ) -> ( ph -/\ th ) ) <-> ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) |
17 |
15 16
|
sylib |
|- ( ( ph -> ch ) -> ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) |
18 |
2 4 17
|
3syl |
|- ( ( ph -/\ ( ch -/\ ps ) ) -> ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) |
19 |
|
pm4.24 |
|- ( ta <-> ( ta /\ ta ) ) |
20 |
19
|
biimpi |
|- ( ta -> ( ta /\ ta ) ) |
21 |
|
nannan |
|- ( ( ta -/\ ( ta -/\ ta ) ) <-> ( ta -> ( ta /\ ta ) ) ) |
22 |
20 21
|
mpbir |
|- ( ta -/\ ( ta -/\ ta ) ) |
23 |
18 22
|
jctil |
|- ( ( ph -/\ ( ch -/\ ps ) ) -> ( ( ta -/\ ( ta -/\ ta ) ) /\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) |
24 |
|
nannan |
|- ( ( ( ph -/\ ( ch -/\ ps ) ) -/\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) <-> ( ( ph -/\ ( ch -/\ ps ) ) -> ( ( ta -/\ ( ta -/\ ta ) ) /\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) ) |
25 |
23 24
|
mpbir |
|- ( ( ph -/\ ( ch -/\ ps ) ) -/\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) |