| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nannan |
|- ( ( ph -/\ ( ch -/\ ps ) ) <-> ( ph -> ( ch /\ ps ) ) ) |
| 2 |
1
|
biimpi |
|- ( ( ph -/\ ( ch -/\ ps ) ) -> ( ph -> ( ch /\ ps ) ) ) |
| 3 |
|
simpl |
|- ( ( ch /\ ps ) -> ch ) |
| 4 |
3
|
imim2i |
|- ( ( ph -> ( ch /\ ps ) ) -> ( ph -> ch ) ) |
| 5 |
|
imnan |
|- ( ( th -> -. ch ) <-> -. ( th /\ ch ) ) |
| 6 |
|
df-nan |
|- ( ( th -/\ ch ) <-> -. ( th /\ ch ) ) |
| 7 |
5 6
|
bitr4i |
|- ( ( th -> -. ch ) <-> ( th -/\ ch ) ) |
| 8 |
|
con3 |
|- ( ( ph -> ch ) -> ( -. ch -> -. ph ) ) |
| 9 |
8
|
imim2d |
|- ( ( ph -> ch ) -> ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) |
| 10 |
|
imnan |
|- ( ( ph -> -. th ) <-> -. ( ph /\ th ) ) |
| 11 |
|
con2b |
|- ( ( th -> -. ph ) <-> ( ph -> -. th ) ) |
| 12 |
|
df-nan |
|- ( ( ph -/\ th ) <-> -. ( ph /\ th ) ) |
| 13 |
10 11 12
|
3bitr4ri |
|- ( ( ph -/\ th ) <-> ( th -> -. ph ) ) |
| 14 |
9 13
|
imbitrrdi |
|- ( ( ph -> ch ) -> ( ( th -> -. ch ) -> ( ph -/\ th ) ) ) |
| 15 |
7 14
|
biimtrrid |
|- ( ( ph -> ch ) -> ( ( th -/\ ch ) -> ( ph -/\ th ) ) ) |
| 16 |
|
nanim |
|- ( ( ( th -/\ ch ) -> ( ph -/\ th ) ) <-> ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) |
| 17 |
15 16
|
sylib |
|- ( ( ph -> ch ) -> ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) |
| 18 |
2 4 17
|
3syl |
|- ( ( ph -/\ ( ch -/\ ps ) ) -> ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) |
| 19 |
|
pm4.24 |
|- ( ta <-> ( ta /\ ta ) ) |
| 20 |
19
|
biimpi |
|- ( ta -> ( ta /\ ta ) ) |
| 21 |
|
nannan |
|- ( ( ta -/\ ( ta -/\ ta ) ) <-> ( ta -> ( ta /\ ta ) ) ) |
| 22 |
20 21
|
mpbir |
|- ( ta -/\ ( ta -/\ ta ) ) |
| 23 |
18 22
|
jctil |
|- ( ( ph -/\ ( ch -/\ ps ) ) -> ( ( ta -/\ ( ta -/\ ta ) ) /\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) |
| 24 |
|
nannan |
|- ( ( ( ph -/\ ( ch -/\ ps ) ) -/\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) <-> ( ( ph -/\ ( ch -/\ ps ) ) -> ( ( ta -/\ ( ta -/\ ta ) ) /\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) ) |
| 25 |
23 24
|
mpbir |
|- ( ( ph -/\ ( ch -/\ ps ) ) -/\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) |