| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( ch /\ ps ) -> ch ) | 
						
							| 2 | 1 | imim2i |  |-  ( ( ph -> ( ch /\ ps ) ) -> ( ph -> ch ) ) | 
						
							| 3 |  | con3 |  |-  ( ( ph -> ch ) -> ( -. ch -> -. ph ) ) | 
						
							| 4 | 3 | imim2d |  |-  ( ( ph -> ch ) -> ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) | 
						
							| 5 | 2 4 | syl |  |-  ( ( ph -> ( ch /\ ps ) ) -> ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) | 
						
							| 6 |  | anidm |  |-  ( ( ta /\ ta ) <-> ta ) | 
						
							| 7 | 6 | biimpri |  |-  ( ta -> ( ta /\ ta ) ) | 
						
							| 8 | 5 7 | jctil |  |-  ( ( ph -> ( ch /\ ps ) ) -> ( ( ta -> ( ta /\ ta ) ) /\ ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) ) | 
						
							| 9 |  | df-nan |  |-  ( ( ch -/\ ps ) <-> -. ( ch /\ ps ) ) | 
						
							| 10 | 9 | anbi2i |  |-  ( ( ph /\ ( ch -/\ ps ) ) <-> ( ph /\ -. ( ch /\ ps ) ) ) | 
						
							| 11 | 10 | notbii |  |-  ( -. ( ph /\ ( ch -/\ ps ) ) <-> -. ( ph /\ -. ( ch /\ ps ) ) ) | 
						
							| 12 |  | df-nan |  |-  ( ( ph -/\ ( ch -/\ ps ) ) <-> -. ( ph /\ ( ch -/\ ps ) ) ) | 
						
							| 13 |  | iman |  |-  ( ( ph -> ( ch /\ ps ) ) <-> -. ( ph /\ -. ( ch /\ ps ) ) ) | 
						
							| 14 | 11 12 13 | 3bitr4i |  |-  ( ( ph -/\ ( ch -/\ ps ) ) <-> ( ph -> ( ch /\ ps ) ) ) | 
						
							| 15 |  | df-nan |  |-  ( ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) <-> -. ( ( ta -/\ ( ta -/\ ta ) ) /\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) | 
						
							| 16 |  | df-nan |  |-  ( ( ta -/\ ta ) <-> -. ( ta /\ ta ) ) | 
						
							| 17 | 16 | anbi2i |  |-  ( ( ta /\ ( ta -/\ ta ) ) <-> ( ta /\ -. ( ta /\ ta ) ) ) | 
						
							| 18 | 17 | notbii |  |-  ( -. ( ta /\ ( ta -/\ ta ) ) <-> -. ( ta /\ -. ( ta /\ ta ) ) ) | 
						
							| 19 |  | df-nan |  |-  ( ( ta -/\ ( ta -/\ ta ) ) <-> -. ( ta /\ ( ta -/\ ta ) ) ) | 
						
							| 20 |  | iman |  |-  ( ( ta -> ( ta /\ ta ) ) <-> -. ( ta /\ -. ( ta /\ ta ) ) ) | 
						
							| 21 | 18 19 20 | 3bitr4i |  |-  ( ( ta -/\ ( ta -/\ ta ) ) <-> ( ta -> ( ta /\ ta ) ) ) | 
						
							| 22 |  | df-nan |  |-  ( ( th -/\ ch ) <-> -. ( th /\ ch ) ) | 
						
							| 23 |  | imnan |  |-  ( ( th -> -. ch ) <-> -. ( th /\ ch ) ) | 
						
							| 24 | 22 23 | bitr4i |  |-  ( ( th -/\ ch ) <-> ( th -> -. ch ) ) | 
						
							| 25 |  | df-nan |  |-  ( ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) <-> -. ( ( ph -/\ th ) /\ ( ph -/\ th ) ) ) | 
						
							| 26 |  | anidm |  |-  ( ( ( ph -/\ th ) /\ ( ph -/\ th ) ) <-> ( ph -/\ th ) ) | 
						
							| 27 |  | df-nan |  |-  ( ( ph -/\ th ) <-> -. ( ph /\ th ) ) | 
						
							| 28 |  | imnan |  |-  ( ( ph -> -. th ) <-> -. ( ph /\ th ) ) | 
						
							| 29 |  | con2b |  |-  ( ( ph -> -. th ) <-> ( th -> -. ph ) ) | 
						
							| 30 | 28 29 | bitr3i |  |-  ( -. ( ph /\ th ) <-> ( th -> -. ph ) ) | 
						
							| 31 | 26 27 30 | 3bitri |  |-  ( ( ( ph -/\ th ) /\ ( ph -/\ th ) ) <-> ( th -> -. ph ) ) | 
						
							| 32 | 25 31 | xchbinx |  |-  ( ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) <-> -. ( th -> -. ph ) ) | 
						
							| 33 | 24 32 | anbi12i |  |-  ( ( ( th -/\ ch ) /\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) <-> ( ( th -> -. ch ) /\ -. ( th -> -. ph ) ) ) | 
						
							| 34 | 33 | notbii |  |-  ( -. ( ( th -/\ ch ) /\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) <-> -. ( ( th -> -. ch ) /\ -. ( th -> -. ph ) ) ) | 
						
							| 35 |  | df-nan |  |-  ( ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) <-> -. ( ( th -/\ ch ) /\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) | 
						
							| 36 |  | iman |  |-  ( ( ( th -> -. ch ) -> ( th -> -. ph ) ) <-> -. ( ( th -> -. ch ) /\ -. ( th -> -. ph ) ) ) | 
						
							| 37 | 34 35 36 | 3bitr4i |  |-  ( ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) <-> ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) | 
						
							| 38 | 21 37 | anbi12i |  |-  ( ( ( ta -/\ ( ta -/\ ta ) ) /\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) <-> ( ( ta -> ( ta /\ ta ) ) /\ ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) ) | 
						
							| 39 | 15 38 | xchbinx |  |-  ( ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) <-> -. ( ( ta -> ( ta /\ ta ) ) /\ ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) ) | 
						
							| 40 | 14 39 | anbi12i |  |-  ( ( ( ph -/\ ( ch -/\ ps ) ) /\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) <-> ( ( ph -> ( ch /\ ps ) ) /\ -. ( ( ta -> ( ta /\ ta ) ) /\ ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) ) ) | 
						
							| 41 | 40 | notbii |  |-  ( -. ( ( ph -/\ ( ch -/\ ps ) ) /\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) <-> -. ( ( ph -> ( ch /\ ps ) ) /\ -. ( ( ta -> ( ta /\ ta ) ) /\ ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) ) ) | 
						
							| 42 |  | iman |  |-  ( ( ( ph -> ( ch /\ ps ) ) -> ( ( ta -> ( ta /\ ta ) ) /\ ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) ) <-> -. ( ( ph -> ( ch /\ ps ) ) /\ -. ( ( ta -> ( ta /\ ta ) ) /\ ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) ) ) | 
						
							| 43 | 41 42 | bitr4i |  |-  ( -. ( ( ph -/\ ( ch -/\ ps ) ) /\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) <-> ( ( ph -> ( ch /\ ps ) ) -> ( ( ta -> ( ta /\ ta ) ) /\ ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) ) ) | 
						
							| 44 | 8 43 | mpbir |  |-  -. ( ( ph -/\ ( ch -/\ ps ) ) /\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) | 
						
							| 45 |  | df-nan |  |-  ( ( ( ph -/\ ( ch -/\ ps ) ) -/\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) <-> -. ( ( ph -/\ ( ch -/\ ps ) ) /\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) ) | 
						
							| 46 | 44 45 | mpbir |  |-  ( ( ph -/\ ( ch -/\ ps ) ) -/\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) |