Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( ch /\ ps ) -> ch ) |
2 |
1
|
imim2i |
|- ( ( ph -> ( ch /\ ps ) ) -> ( ph -> ch ) ) |
3 |
|
con3 |
|- ( ( ph -> ch ) -> ( -. ch -> -. ph ) ) |
4 |
3
|
imim2d |
|- ( ( ph -> ch ) -> ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) |
5 |
2 4
|
syl |
|- ( ( ph -> ( ch /\ ps ) ) -> ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) |
6 |
|
anidm |
|- ( ( ta /\ ta ) <-> ta ) |
7 |
6
|
biimpri |
|- ( ta -> ( ta /\ ta ) ) |
8 |
5 7
|
jctil |
|- ( ( ph -> ( ch /\ ps ) ) -> ( ( ta -> ( ta /\ ta ) ) /\ ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) ) |
9 |
|
df-nan |
|- ( ( ch -/\ ps ) <-> -. ( ch /\ ps ) ) |
10 |
9
|
anbi2i |
|- ( ( ph /\ ( ch -/\ ps ) ) <-> ( ph /\ -. ( ch /\ ps ) ) ) |
11 |
10
|
notbii |
|- ( -. ( ph /\ ( ch -/\ ps ) ) <-> -. ( ph /\ -. ( ch /\ ps ) ) ) |
12 |
|
df-nan |
|- ( ( ph -/\ ( ch -/\ ps ) ) <-> -. ( ph /\ ( ch -/\ ps ) ) ) |
13 |
|
iman |
|- ( ( ph -> ( ch /\ ps ) ) <-> -. ( ph /\ -. ( ch /\ ps ) ) ) |
14 |
11 12 13
|
3bitr4i |
|- ( ( ph -/\ ( ch -/\ ps ) ) <-> ( ph -> ( ch /\ ps ) ) ) |
15 |
|
df-nan |
|- ( ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) <-> -. ( ( ta -/\ ( ta -/\ ta ) ) /\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) |
16 |
|
df-nan |
|- ( ( ta -/\ ta ) <-> -. ( ta /\ ta ) ) |
17 |
16
|
anbi2i |
|- ( ( ta /\ ( ta -/\ ta ) ) <-> ( ta /\ -. ( ta /\ ta ) ) ) |
18 |
17
|
notbii |
|- ( -. ( ta /\ ( ta -/\ ta ) ) <-> -. ( ta /\ -. ( ta /\ ta ) ) ) |
19 |
|
df-nan |
|- ( ( ta -/\ ( ta -/\ ta ) ) <-> -. ( ta /\ ( ta -/\ ta ) ) ) |
20 |
|
iman |
|- ( ( ta -> ( ta /\ ta ) ) <-> -. ( ta /\ -. ( ta /\ ta ) ) ) |
21 |
18 19 20
|
3bitr4i |
|- ( ( ta -/\ ( ta -/\ ta ) ) <-> ( ta -> ( ta /\ ta ) ) ) |
22 |
|
df-nan |
|- ( ( th -/\ ch ) <-> -. ( th /\ ch ) ) |
23 |
|
imnan |
|- ( ( th -> -. ch ) <-> -. ( th /\ ch ) ) |
24 |
22 23
|
bitr4i |
|- ( ( th -/\ ch ) <-> ( th -> -. ch ) ) |
25 |
|
df-nan |
|- ( ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) <-> -. ( ( ph -/\ th ) /\ ( ph -/\ th ) ) ) |
26 |
|
anidm |
|- ( ( ( ph -/\ th ) /\ ( ph -/\ th ) ) <-> ( ph -/\ th ) ) |
27 |
|
df-nan |
|- ( ( ph -/\ th ) <-> -. ( ph /\ th ) ) |
28 |
|
imnan |
|- ( ( ph -> -. th ) <-> -. ( ph /\ th ) ) |
29 |
|
con2b |
|- ( ( ph -> -. th ) <-> ( th -> -. ph ) ) |
30 |
28 29
|
bitr3i |
|- ( -. ( ph /\ th ) <-> ( th -> -. ph ) ) |
31 |
26 27 30
|
3bitri |
|- ( ( ( ph -/\ th ) /\ ( ph -/\ th ) ) <-> ( th -> -. ph ) ) |
32 |
25 31
|
xchbinx |
|- ( ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) <-> -. ( th -> -. ph ) ) |
33 |
24 32
|
anbi12i |
|- ( ( ( th -/\ ch ) /\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) <-> ( ( th -> -. ch ) /\ -. ( th -> -. ph ) ) ) |
34 |
33
|
notbii |
|- ( -. ( ( th -/\ ch ) /\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) <-> -. ( ( th -> -. ch ) /\ -. ( th -> -. ph ) ) ) |
35 |
|
df-nan |
|- ( ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) <-> -. ( ( th -/\ ch ) /\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) |
36 |
|
iman |
|- ( ( ( th -> -. ch ) -> ( th -> -. ph ) ) <-> -. ( ( th -> -. ch ) /\ -. ( th -> -. ph ) ) ) |
37 |
34 35 36
|
3bitr4i |
|- ( ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) <-> ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) |
38 |
21 37
|
anbi12i |
|- ( ( ( ta -/\ ( ta -/\ ta ) ) /\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) <-> ( ( ta -> ( ta /\ ta ) ) /\ ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) ) |
39 |
15 38
|
xchbinx |
|- ( ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) <-> -. ( ( ta -> ( ta /\ ta ) ) /\ ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) ) |
40 |
14 39
|
anbi12i |
|- ( ( ( ph -/\ ( ch -/\ ps ) ) /\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) <-> ( ( ph -> ( ch /\ ps ) ) /\ -. ( ( ta -> ( ta /\ ta ) ) /\ ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) ) ) |
41 |
40
|
notbii |
|- ( -. ( ( ph -/\ ( ch -/\ ps ) ) /\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) <-> -. ( ( ph -> ( ch /\ ps ) ) /\ -. ( ( ta -> ( ta /\ ta ) ) /\ ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) ) ) |
42 |
|
iman |
|- ( ( ( ph -> ( ch /\ ps ) ) -> ( ( ta -> ( ta /\ ta ) ) /\ ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) ) <-> -. ( ( ph -> ( ch /\ ps ) ) /\ -. ( ( ta -> ( ta /\ ta ) ) /\ ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) ) ) |
43 |
41 42
|
bitr4i |
|- ( -. ( ( ph -/\ ( ch -/\ ps ) ) /\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) <-> ( ( ph -> ( ch /\ ps ) ) -> ( ( ta -> ( ta /\ ta ) ) /\ ( ( th -> -. ch ) -> ( th -> -. ph ) ) ) ) ) |
44 |
8 43
|
mpbir |
|- -. ( ( ph -/\ ( ch -/\ ps ) ) /\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) |
45 |
|
df-nan |
|- ( ( ( ph -/\ ( ch -/\ ps ) ) -/\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) <-> -. ( ( ph -/\ ( ch -/\ ps ) ) /\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) ) |
46 |
44 45
|
mpbir |
|- ( ( ph -/\ ( ch -/\ ps ) ) -/\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) |