Metamath Proof Explorer


Theorem luk-2

Description: 2 of 3 axioms for propositional calculus due to Lukasiewicz, derived from Meredith's sole axiom. (Contributed by NM, 14-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion luk-2 ¬φφφ

Proof

Step Hyp Ref Expression
1 merlem5 φ¬¬φφ¬¬φ¬¬φφ
2 merlem4 φ¬¬φφ¬¬φ¬¬φφφ¬¬φφ¬¬φ¬¬φφ¬φφ¬¬φφ¬¬φ¬¬φφ¬φ¬φ
3 1 2 ax-mp φ¬¬φφ¬¬φ¬¬φφ¬φφ¬¬φφ¬¬φ¬¬φφ¬φ¬φ
4 merlem11 φ¬¬φφ¬¬φ¬¬φφ¬φφ¬¬φφ¬¬φ¬¬φφ¬φ¬φφ¬¬φφ¬¬φ¬¬φφ¬φ¬φ
5 3 4 ax-mp φ¬¬φφ¬¬φ¬¬φφ¬φ¬φ
6 meredith φ¬¬φφ¬¬φ¬¬φφ¬φ¬φ¬φφ¬φφφ
7 5 6 ax-mp ¬φφ¬φφφ
8 merlem11 ¬φφ¬φφφ¬φφφ
9 7 8 ax-mp ¬φφφ