Metamath Proof Explorer


Theorem m2cpminv

Description: The inverse matrix transformation is a 1-1 function from the constant polynomial matrices onto the matrices over the base ring of the polynomials. (Contributed by AV, 27-Nov-2019) (Revised by AV, 15-Dec-2019)

Ref Expression
Hypotheses m2cpminv.a A = N Mat R
m2cpminv.k K = Base A
m2cpminv.s S = N ConstPolyMat R
m2cpminv.i I = N cPolyMatToMat R
m2cpminv.t T = N matToPolyMat R
Assertion m2cpminv N Fin R Ring I : S 1-1 onto K I -1 = T

Proof

Step Hyp Ref Expression
1 m2cpminv.a A = N Mat R
2 m2cpminv.k K = Base A
3 m2cpminv.s S = N ConstPolyMat R
4 m2cpminv.i I = N cPolyMatToMat R
5 m2cpminv.t T = N matToPolyMat R
6 1 2 3 4 cpm2mf N Fin R Ring I : S K
7 3 5 1 2 m2cpmf N Fin R Ring T : K S
8 3 4 5 m2cpminvid2 N Fin R Ring s S T I s = s
9 8 3expa N Fin R Ring s S T I s = s
10 9 ralrimiva N Fin R Ring s S T I s = s
11 4 1 2 5 m2cpminvid N Fin R Ring k K I T k = k
12 11 3expa N Fin R Ring k K I T k = k
13 12 ralrimiva N Fin R Ring k K I T k = k
14 6 7 10 13 2fvidf1od N Fin R Ring I : S 1-1 onto K
15 6 7 10 13 2fvidinvd N Fin R Ring I -1 = T
16 14 15 jca N Fin R Ring I : S 1-1 onto K I -1 = T