Metamath Proof Explorer


Theorem m2cpminv

Description: The inverse matrix transformation is a 1-1 function from the constant polynomial matrices onto the matrices over the base ring of the polynomials. (Contributed by AV, 27-Nov-2019) (Revised by AV, 15-Dec-2019)

Ref Expression
Hypotheses m2cpminv.a A=NMatR
m2cpminv.k K=BaseA
m2cpminv.s S=NConstPolyMatR
m2cpminv.i I=NcPolyMatToMatR
m2cpminv.t T=NmatToPolyMatR
Assertion m2cpminv NFinRRingI:S1-1 ontoKI-1=T

Proof

Step Hyp Ref Expression
1 m2cpminv.a A=NMatR
2 m2cpminv.k K=BaseA
3 m2cpminv.s S=NConstPolyMatR
4 m2cpminv.i I=NcPolyMatToMatR
5 m2cpminv.t T=NmatToPolyMatR
6 1 2 3 4 cpm2mf NFinRRingI:SK
7 3 5 1 2 m2cpmf NFinRRingT:KS
8 3 4 5 m2cpminvid2 NFinRRingsSTIs=s
9 8 3expa NFinRRingsSTIs=s
10 9 ralrimiva NFinRRingsSTIs=s
11 4 1 2 5 m2cpminvid NFinRRingkKITk=k
12 11 3expa NFinRRingkKITk=k
13 12 ralrimiva NFinRRingkKITk=k
14 6 7 10 13 2fvidf1od NFinRRingI:S1-1 ontoK
15 6 7 10 13 2fvidinvd NFinRRingI-1=T
16 14 15 jca NFinRRingI:S1-1 ontoKI-1=T