Metamath Proof Explorer


Definition df-mat2pmat

Description: Transformation of a matrix (over a ring) into a matrix over the corresponding polynomial ring. (Contributed by AV, 31-Jul-2019)

Ref Expression
Assertion df-mat2pmat matToPolyMat=nFin,rVmBasenMatrxn,ynalgScPoly1rxmy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmat2pmat classmatToPolyMat
1 vn setvarn
2 cfn classFin
3 vr setvarr
4 cvv classV
5 vm setvarm
6 cbs classBase
7 1 cv setvarn
8 cmat classMat
9 3 cv setvarr
10 7 9 8 co classnMatr
11 10 6 cfv classBasenMatr
12 vx setvarx
13 vy setvary
14 cascl classalgSc
15 cpl1 classPoly1
16 9 15 cfv classPoly1r
17 16 14 cfv classalgScPoly1r
18 12 cv setvarx
19 5 cv setvarm
20 13 cv setvary
21 18 20 19 co classxmy
22 21 17 cfv classalgScPoly1rxmy
23 12 13 7 7 22 cmpo classxn,ynalgScPoly1rxmy
24 5 11 23 cmpt classmBasenMatrxn,ynalgScPoly1rxmy
25 1 3 2 4 24 cmpo classnFin,rVmBasenMatrxn,ynalgScPoly1rxmy
26 0 25 wceq wffmatToPolyMat=nFin,rVmBasenMatrxn,ynalgScPoly1rxmy