Metamath Proof Explorer


Definition df-cpmat2mat

Description: Transformation of a constant polynomial matrix (over a ring) into a matrix over the corresponding ring. Since this function is the inverse function of matToPolyMat , see m2cpminv , it is also called "inverse matrix transformation" in the following. (Contributed by AV, 14-Dec-2019)

Ref Expression
Assertion df-cpmat2mat cPolyMatToMat=nFin,rVmnConstPolyMatrxn,yncoe1xmy0

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccpmat2mat classcPolyMatToMat
1 vn setvarn
2 cfn classFin
3 vr setvarr
4 cvv classV
5 vm setvarm
6 1 cv setvarn
7 ccpmat classConstPolyMat
8 3 cv setvarr
9 6 8 7 co classnConstPolyMatr
10 vx setvarx
11 vy setvary
12 cco1 classcoe1
13 10 cv setvarx
14 5 cv setvarm
15 11 cv setvary
16 13 15 14 co classxmy
17 16 12 cfv classcoe1xmy
18 cc0 class0
19 18 17 cfv classcoe1xmy0
20 10 11 6 6 19 cmpo classxn,yncoe1xmy0
21 5 9 20 cmpt classmnConstPolyMatrxn,yncoe1xmy0
22 1 3 2 4 21 cmpo classnFin,rVmnConstPolyMatrxn,yncoe1xmy0
23 0 22 wceq wffcPolyMatToMat=nFin,rVmnConstPolyMatrxn,yncoe1xmy0