Metamath Proof Explorer


Definition df-ascl

Description: Every unital algebra contains a canonical homomorphic image of its ring of scalars as scalar multiples of the unity element. This names the homomorphism. (Contributed by Mario Carneiro, 8-Mar-2015)

Ref Expression
Assertion df-ascl algSc=wVxBaseScalarwxw1w

Detailed syntax breakdown

Step Hyp Ref Expression
0 cascl classalgSc
1 vw setvarw
2 cvv classV
3 vx setvarx
4 cbs classBase
5 csca classScalar
6 1 cv setvarw
7 6 5 cfv classScalarw
8 7 4 cfv classBaseScalarw
9 3 cv setvarx
10 cvsca class𝑠
11 6 10 cfv classw
12 cur class1r
13 6 12 cfv class1w
14 9 13 11 co classxw1w
15 3 8 14 cmpt classxBaseScalarwxw1w
16 1 2 15 cmpt classwVxBaseScalarwxw1w
17 0 16 wceq wffalgSc=wVxBaseScalarwxw1w