Metamath Proof Explorer


Theorem matecld

Description: Each entry (according to Wikipedia "Matrix (mathematics)", 30-Dec-2018, https://en.wikipedia.org/wiki/Matrix_(mathematics)#Definition (or element or component or coefficient or cell) of a matrix is an element of the underlying ring, deduction form. (Contributed by AV, 27-Nov-2019)

Ref Expression
Hypotheses matecl.a A=NMatR
matecl.k K=BaseR
matecld.b B=BaseA
matecld.i φIN
matecld.j φJN
matecld.m φMB
Assertion matecld φIMJK

Proof

Step Hyp Ref Expression
1 matecl.a A=NMatR
2 matecl.k K=BaseR
3 matecld.b B=BaseA
4 matecld.i φIN
5 matecld.j φJN
6 matecld.m φMB
7 6 3 eleqtrdi φMBaseA
8 1 2 matecl INJNMBaseAIMJK
9 4 5 7 8 syl3anc φIMJK