Metamath Proof Explorer


Theorem mdandyvr1

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr1.1 φζ
mdandyvr1.2 ψσ
mdandyvr1.3 χψ
mdandyvr1.4 θφ
mdandyvr1.5 τφ
mdandyvr1.6 ηφ
Assertion mdandyvr1 χσθζτζηζ

Proof

Step Hyp Ref Expression
1 mdandyvr1.1 φζ
2 mdandyvr1.2 ψσ
3 mdandyvr1.3 χψ
4 mdandyvr1.4 θφ
5 mdandyvr1.5 τφ
6 mdandyvr1.6 ηφ
7 3 2 bitri χσ
8 4 1 bitri θζ
9 7 8 pm3.2i χσθζ
10 5 1 bitri τζ
11 9 10 pm3.2i χσθζτζ
12 6 1 bitri ηζ
13 11 12 pm3.2i χσθζτζηζ