Database  
				SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)  
				Mathbox for Jarvin Udandy  
				mdandyvr1  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Given the equivalences set in the hypotheses, there exist a proof where
       ch, th, ta, et match ze, si accordingly.  (Contributed by Jarvin Udandy , 7-Sep-2016) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						mdandyvr1.1  
						   ⊢   φ   ↔   ζ        
					 
					
						 
						 
						mdandyvr1.2  
						   ⊢   ψ   ↔   σ        
					 
					
						 
						 
						mdandyvr1.3  
						   ⊢   χ   ↔   ψ        
					 
					
						 
						 
						mdandyvr1.4  
						   ⊢   θ   ↔   φ        
					 
					
						 
						 
						mdandyvr1.5  
						   ⊢   τ   ↔   φ        
					 
					
						 
						 
						mdandyvr1.6  
						   ⊢   η   ↔   φ        
					 
				
					 
					Assertion 
					mdandyvr1  
					  ⊢       χ   ↔   σ      ∧    θ   ↔   ζ         ∧    τ   ↔   ζ         ∧    η   ↔   ζ              
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							mdandyvr1.1  
							    ⊢   φ   ↔   ζ        
						 
						
							2  
							
								
							 
							mdandyvr1.2  
							    ⊢   ψ   ↔   σ        
						 
						
							3  
							
								
							 
							mdandyvr1.3  
							    ⊢   χ   ↔   ψ        
						 
						
							4  
							
								
							 
							mdandyvr1.4  
							    ⊢   θ   ↔   φ        
						 
						
							5  
							
								
							 
							mdandyvr1.5  
							    ⊢   τ   ↔   φ        
						 
						
							6  
							
								
							 
							mdandyvr1.6  
							    ⊢   η   ↔   φ        
						 
						
							7  
							
								3  2 
							 
							bitri  
							    ⊢   χ   ↔   σ        
						 
						
							8  
							
								4  1 
							 
							bitri  
							    ⊢   θ   ↔   ζ        
						 
						
							9  
							
								7  8 
							 
							pm3.2i  
							   ⊢     χ   ↔   σ      ∧    θ   ↔   ζ              
						 
						
							10  
							
								5  1 
							 
							bitri  
							    ⊢   τ   ↔   ζ        
						 
						
							11  
							
								9  10 
							 
							pm3.2i  
							   ⊢      χ   ↔   σ      ∧    θ   ↔   ζ         ∧    τ   ↔   ζ              
						 
						
							12  
							
								6  1 
							 
							bitri  
							    ⊢   η   ↔   ζ        
						 
						
							13  
							
								11  12 
							 
							pm3.2i  
							   ⊢       χ   ↔   σ      ∧    θ   ↔   ζ         ∧    τ   ↔   ζ         ∧    η   ↔   ζ