Metamath Proof Explorer


Theorem mdandyvr14

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr14.1 φζ
mdandyvr14.2 ψσ
mdandyvr14.3 χφ
mdandyvr14.4 θψ
mdandyvr14.5 τψ
mdandyvr14.6 ηψ
Assertion mdandyvr14 χζθστσησ

Proof

Step Hyp Ref Expression
1 mdandyvr14.1 φζ
2 mdandyvr14.2 ψσ
3 mdandyvr14.3 χφ
4 mdandyvr14.4 θψ
5 mdandyvr14.5 τψ
6 mdandyvr14.6 ηψ
7 2 1 3 4 5 6 mdandyvr1 χζθστσησ