Metamath Proof Explorer


Theorem mdandyvr2

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr2.1 φζ
mdandyvr2.2 ψσ
mdandyvr2.3 χφ
mdandyvr2.4 θψ
mdandyvr2.5 τφ
mdandyvr2.6 ηφ
Assertion mdandyvr2 χζθστζηζ

Proof

Step Hyp Ref Expression
1 mdandyvr2.1 φζ
2 mdandyvr2.2 ψσ
3 mdandyvr2.3 χφ
4 mdandyvr2.4 θψ
5 mdandyvr2.5 τφ
6 mdandyvr2.6 ηφ
7 3 1 bitri χζ
8 4 2 bitri θσ
9 7 8 pm3.2i χζθσ
10 5 1 bitri τζ
11 9 10 pm3.2i χζθστζ
12 6 1 bitri ηζ
13 11 12 pm3.2i χζθστζηζ