Metamath Proof Explorer


Theorem mdandyvr4

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr4.1 φζ
mdandyvr4.2 ψσ
mdandyvr4.3 χφ
mdandyvr4.4 θφ
mdandyvr4.5 τψ
mdandyvr4.6 ηφ
Assertion mdandyvr4 χζθζτσηζ

Proof

Step Hyp Ref Expression
1 mdandyvr4.1 φζ
2 mdandyvr4.2 ψσ
3 mdandyvr4.3 χφ
4 mdandyvr4.4 θφ
5 mdandyvr4.5 τψ
6 mdandyvr4.6 ηφ
7 3 1 bitri χζ
8 4 1 bitri θζ
9 7 8 pm3.2i χζθζ
10 5 2 bitri τσ
11 9 10 pm3.2i χζθζτσ
12 6 1 bitri ηζ
13 11 12 pm3.2i χζθζτσηζ